import streamlit as st import pickle import pandas as pd import requests #to fetch images def fetch_poster(movie_id): url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id) data = requests.get(url,verify=False) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def recommend(movie): movie_index = movies[movies['title'] == movie].index[0] # fetching the index of movie distances = similarity[movie_index] movie_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6] recommended_movies=[] recommended_movies_posters=[] for i in movie_list: movie_id = movies.iloc[i[0]].movie_id recommended_movies.append(movies.iloc[i[0]].title) recommended_movies_posters.append(fetch_poster(movie_id)) return recommended_movies,recommended_movies_posters movies_dict=pickle.load(open('movie_dict.pkl','rb')) #read binary movies=pd.DataFrame(movies_dict) similarity=pickle.load(open('similarity.pkl','rb')) #read binary st.title('Movie Nutz - A recommender') selected_movie_name = st.selectbox( 'Type or select a movie from the dropdown menu of your choice:', movies['title'].values ) if st.button('Show Recommendation'): recommended_movie_names,recommended_movie_posters = recommend(selected_movie_name) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(recommended_movie_names[0]) st.image(recommended_movie_posters[0]) with col2: st.text(recommended_movie_names[1]) st.image(recommended_movie_posters[1]) with col3: st.text(recommended_movie_names[2]) st.image(recommended_movie_posters[2]) with col4: st.text(recommended_movie_names[3]) st.image(recommended_movie_posters[3]) with col5: st.text(recommended_movie_names[4]) st.image(recommended_movie_posters[4])