import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModel from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain_community.embeddings import HuggingFaceEmbeddings import fitz # PyMuPDF # Function to get available models from Hugging Face def get_hf_models(): return ["Qwen/Qwen2.5-3B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.1"] # Function to extract text from a PDF def extract_text_from_pdf(pdf_path): text = "" with fitz.open(pdf_path) as doc: for page in doc: text += page.get_text() return text # Function for manual RAG def manual_rag(query, context, client): prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" response = client.text_generation(prompt, max_new_tokens=512) return response # Function for classic RAG def classic_rag(query, pdf_path, client, embedder): text = extract_text_from_pdf(pdf_path) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) embeddings = HuggingFaceEmbeddings(model_name=embedder) db = FAISS.from_texts(chunks, embeddings) docs = db.similarity_search(query, k=3) context = " ".join([doc.page_content for doc in docs]) response = manual_rag(query, context, client) return response, context # Function for response without RAG def no_rag(query, client): response = client.text_generation(query, max_new_tokens=512) return response # Gradio interface function def process_query(query, pdf_path, llm_choice, embedder_choice): client = InferenceClient(llm_choice) full_text = extract_text_from_pdf(pdf_path) no_rag_response = no_rag(query, client) manual_rag_response = manual_rag(query, full_text, client) classic_rag_response, classic_rag_context = classic_rag(query, pdf_path, client, embedder_choice) return no_rag_response, manual_rag_response, classic_rag_response, full_text, classic_rag_context # Create Gradio interface iface = gr.Interface( fn=process_query, inputs=[ gr.Textbox(label="Votre question"), gr.File(label="Chargez votre PDF"), gr.Dropdown(choices=get_hf_models(), label="Choisissez le LLM", value="Qwen/Qwen2.5-3B-Instruct"), gr.Dropdown(choices=["sentence-transformers/all-MiniLM-L6-v2", "nomic-ai/nomic-embed-text-v1.5"], label="Choisissez l'Embedder", value="sentence-transformers/all-MiniLM-L6-v2") ], outputs=[ gr.Textbox(label="Réponse sans RAG"), gr.Textbox(label="Réponse avec RAG manuel"), gr.Textbox(label="Réponse avec RAG classique"), gr.Textbox(label="Texte complet du PDF (pour RAG manuel)", lines=10), gr.Textbox(label="Contexte extrait (pour RAG classique)", lines=10) ], title="Tutoriel RAG - Comparaison des méthodes", description="Posez une question sur le contenu d'un PDF et comparez les réponses obtenues avec différentes méthodes de RAG.", theme="default" ) # Launch the application if __name__ == "__main__": iface.launch()