import transformers import streamlit as st from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gpt2-large") @st.cache def load_model(model_name): model = AutoModelWithLMHead.from_pretrained("gpt2-large") return model model = load_model("gpt2-large") def infer(input_ids, max_length, temperature, top_k, top_p): output_sequences = model.generate( input_ids=input_ids, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, do_sample=True, num_return_sequences=1 ) return output_sequences default_value = "Once upon a time, in a galaxy far, far away...." #prompts st.title("Text completion with GPT-2") sent = st.text_area("Text", default_value, height = 275) max_length = st.sidebar.slider("Max Length", value=100, min_value = 10, max_value=300) temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05) top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 2) top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt") if encoded_prompt.size()[-1] == 0: input_ids = None else: input_ids = encoded_prompt output_sequences = infer(input_ids, max_length, temperature, top_k, top_p) for generated_sequence_idx, generated_sequence in enumerate(output_sequences): print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===") generated_sequences = generated_sequence.tolist() text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) total_sequence = ( sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :] ) generated_sequences.append(total_sequence) st.write(generated_sequences[-1])