import gradio as gr from fastai.vision.all import * # Define a function for determining if image is a cat def is_cat(x): return x[0].isupper() # Load pretrained model learn = load_learner("model.pkl") categories = ("Dog", "Cat") def classify_image(img): """ Classify an image as a dog or cat. :param img: Image to classify :return: Dictionary of probabilities for each class """ pred, pred_idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(224, 224)) label = gr.outputs.Label() examples = ["dog.jpg", "cat.jpg", "tiger.jpg", "wolf.jpg"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()