import gradio as gr from transformers import GPT2Tokenizer, AutoModelForCausalLM import numpy as np tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer.pad_token_id = tokenizer.eos_token_id # if prob > x, then label = y; sorted in descending probability order probs_to_label = [ (0.1, "p >= 10%"), (0.01, "p >= 1%"), (1e-20, "p < 1%"), ] label_to_color = { "p >= 10%": "green", "p >= 1%": "yellow", "p < 1%": "red" } def get_tokens_and_scores(prompt): inputs = tokenizer([prompt], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True) transition_scores = model.compute_transition_scores( outputs.sequences, outputs.scores, normalize_logits=True ) transition_proba = np.exp(transition_scores) input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] generated_tokens = outputs.sequences[:, input_length:] highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids] for token, proba in zip(generated_tokens[0], transition_proba[0]): this_label = None assert 0. <= proba <= 1.0 for min_proba, label in probs_to_label: if proba >= min_proba: this_label = label break highlighted_out.append((tokenizer.decode(token), this_label)) return highlighted_out demo = gr.Interface( get_tokens_and_scores, [ gr.Textbox( label="Prompt", lines=3, value="Today is", ), ], gr.HighlightedText( label="Highlighted generation", combine_adjacent=True, show_legend=True, ).style(color_map=label_to_color), ) if __name__ == "__main__": demo.launch()