import os os.system("pip install git+https://github.com/openai/whisper.git") import gradio as gr import whisper from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline #call tokenizer and NLP model for text classification tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") # call whisper model for audio/speech processing model = whisper.load_model("small") def inference_audio(audio): audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(model.device) _, probs = model.detect_language(mel) options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(model, mel, options) return result.text def inference_text(audio): text =inference_audio(audio) sentiment_task = pipeline("sentiment-analysis", model=model_nlp, tokenizer=tokenizer) res=sentiment_task(text)[0] return res['label'],res['score'] audio = gr.Audio( label="Input Audio", show_label=False, source="microphone", type="filepath" ) app=gr.Interface(title="Sentiment Audio Analysis",fn=inference_text,inputs=[audio], outputs=["text","text"]) app.launch()