# code inspired by Fastai "Practical Deep Learning Part 2" Learner import math import os from functools import partial from operator import attrgetter import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import wandb class CancelFitException(Exception): pass class CancelBatchException(Exception): pass class CancelEpochException(Exception): pass class Callback: order = 0 class with_cbs: """Decorator that wraps function and calls certain callbacks before/after that function.""" def __init__(self, nm): self.nm = nm def __call__(self, f): def _f(o, *args, **kwargs): try: o.callback(f"before_{self.nm}") f(o, *args, **kwargs) o.callback(f"after_{self.nm}") except globals()[f"Cancel{self.nm.title()}Exception"]: pass finally: o.callback(f"cleanup_{self.nm}") return _f def run_cbs(cbs, method_nm, trainer=None): for cb in sorted(cbs, key=attrgetter("order")): # sort callbacks by 'order' method = getattr( cb, method_nm, None ) # get method from callback e.g. `before_batch` if method is not None: method(trainer) # if callback has such method then call it class Trainer: """Trainer with callbacks""" def __init__( self, model, dls=(0,), loss_func=F.mse_loss, opt_func=torch.optim.SGD, lr=0.1, cbs=[], n_inp=1, ): self.model = model self.dls = dls self.loss_func = loss_func self.opt_func = opt_func self.lr = lr self.cbs = cbs self.n_inp = n_inp @with_cbs("batch") def _one_batch(self): self.predict() self.callback("after_predict") self.get_loss() self.callback("after_loss") if self.training: self.backward() self.callback("after_backward") self.step() self.callback("after_step") self.zero_grad() @with_cbs("epoch") def _one_epoch(self): for self.iter, self.batch in enumerate(self.dl): self._one_batch() def one_epoch(self, training): self.model.train(training) self.dl = self.dls.train if training else self.dls.valid self._one_epoch() @with_cbs("fit") def _fit(self, train, valid): for epoch in range(self.n_epochs): if train: self.one_epoch(True) if valid: torch.no_grad()(self.one_epoch)(False) def fit(self, n_epochs=1, train=True, valid=True, cbs=None, lr=None): self.n_epochs = n_epochs if lr is not None: self.lr = lr self.opt = self.opt_func(self.model.parameters(), self.lr) self._fit(train, valid) def callback(self, method_nm): run_cbs(self.cbs, method_nm, self) def predict(self, x=None): if x is not None: return self.model(x) self.preds = self.model(*self.batch[: self.n_inp]) def get_loss(self): self.loss = self.loss_func(self.preds, *self.batch[self.n_inp :]) def backward(self): self.loss.backward() def step(self): self.opt.step() def zero_grad(self): self.opt.zero_grad() @property def training(self): return self.model.training class ProgressCB(Callback): """Adds progress bar to Trainer and plotting loss curves after training.""" def __init__(self, in_notebook=False): super().__init__() self.train_loss = [] self.valid_loss = [] self.in_notebook = in_notebook def before_fit(self, trainer): if self.in_notebook: from tqdm.notebook import tqdm else: from tqdm import tqdm self.pbar = tqdm(total=trainer.n_epochs) def after_epoch(self, trainer): if trainer.training: self.pbar.update(1) def after_loss(self, trainer): if trainer.training: self.train_loss.append(trainer.loss.item()) tmp_train_loss = ( np.mean(self.train_loss[-10:]) if len(self.train_loss) > 10 else 0 ) tmp_valid_loss = ( np.mean(self.valid_loss[-len(trainer.dls.valid) :]) if len(self.valid_loss) > 0 else 0 ) self.pbar.set_description( f"train loss: {tmp_train_loss:.3f} | valid loss: {tmp_valid_loss:.3f}" ) else: self.valid_loss.append(trainer.loss.item()) def after_fit(self, trainer): self.pbar.close() def plot_losses(self, save=True): fig, ax = plt.subplots(1, 2, figsize=(12, 4)) ax[0].plot(self.train_loss) ax[0].set_title("train loss") ax[1].plot(self.valid_loss) ax[1].set_title("valid loss") if save: if not os.path.exists("./plots"): os.makedirs("./plots") plt.savefig("./plots/losses.png") else: plt.show() class DeviceCB(Callback): """Moves model and batches to device""" def __init__(self, device="cpu"): self.device = device def before_fit(self, trainer): if hasattr(trainer.model, "to"): trainer.model.to(self.device) def before_batch(self, trainer): trainer.batch = tuple(t.to(self.device) for t in trainer.batch) class Hook: """Registers PyTorch forward hook with provided function""" def __init__(self, name, mod, f): self.hook = mod.register_forward_hook(partial(f, self, name)) def remove(self): self.hook.remove() def __del__(self): self.remove() class Hooks(list): """List of hooks""" def __init__(self, mods, f): super().__init__([Hook(n, m, f) for n, m in mods]) def __enter__(self, *args): return self def __exit__(self, *args): self.remove() def __del__(self): self.remove() def __delitem__(self, i): self[i].remove() super().__delitem__(i) def remove(self): for h in self: h.remove() class HooksCB(Callback): """Appends hooks with some `hookfunc` to selected layers filtered by `mod_filter`.""" def __init__(self, hookfunc, mod_filter=lambda x: True): super().__init__() self.hookfunc = hookfunc self.mod_filter = mod_filter def before_fit(self, trainer): mods = [ (name, mod) for name, mod in trainer.model.named_modules() if self.mod_filter(mod) ] self.hooks = Hooks(mods, partial(self._hookfunc, trainer.training)) def _hookfunc(self, training, *args, **kwargs): if training: self.hookfunc(*args, **kwargs) def after_fit(self, trainer): self.hooks.remove() def __iter__(self): return iter(self.hooks) def __len__(self): return len(self.hooks) def append_stats(with_wandb, hook, name, mod, inp, outp): if not hasattr(hook, "stats"): hook.stats = {"mean": [], "std": [], "abs": []} acts = outp.detach().cpu() hook.stats["mean"].append(acts.mean().item()) hook.stats["std"].append(acts.std().item()) hook.stats["abs"].append(acts.abs().histc(40, 0, 10).tolist()) if with_wandb: wandb.log( { f"{name}/mean": acts.mean().item(), f"{name}/std": acts.std().item(), f"{name}/abs": wandb.Histogram(acts.abs().histc(40, 0, 10).tolist()), }, commit=False, ) def get_grid(n, figsize): return plt.subplots(round(n / 2), 2, figsize=figsize) class WandBCB(Callback): """Inits and logs to W&B. Every `wandb.log()` outside this callback should have property `commit=False` because this callback gathers all logs in given batch.""" order = math.inf # make sure that this callback will be called last def __init__( self, proj_name, model_path, run_name=None, notes=None, **additional_config ): self.proj_name = proj_name self.run_name = run_name self.model_path = model_path self.notes = notes self.additional_config = additional_config def before_fit(self, trainer): info = dict( project=self.proj_name, config={"lr": trainer.lr, "n_epochs": trainer.n_epochs}, ) if self.run_name is not None: info["name"] = self.run_name if self.notes is not None: info["notes"] = self.notes if self.additional_config is not None: info["config"] = {**info["config"], **self.additional_config} wandb.init(**info) wandb.watch(trainer.model, log="all") def after_loss(self, trainer): if trainer.training: wandb.log({"loss/train": trainer.loss.item()}, commit=False) else: wandb.log({"loss/valid": trainer.loss.item()}, commit=False) def after_batch(self, trainer): wandb.log({}, commit=True) def after_fit(self, trainer): torch.save(trainer.model.state_dict(), self.model_path) wandb.save(self.model_path) wandb.finish() class ActivationStatsCB(HooksCB): """Stores activation statistics of selected modules. Recommended only for debugging or visualizations, not for actual training because it significantly slows down training.""" def __init__(self, mod_filter=lambda x: x, with_wandb=False): super().__init__(partial(append_stats, with_wandb), mod_filter) def plot_stats(self, save=True): # plot output means & std devs of each module fig, axes = get_grid(2, figsize=(20, 10)) for h in self.hooks: for i, name in enumerate(["mean", "std dev"]): axes[i].plot(h.stats[i]) axes[i].set_title(name) plt.legend(range(len(self.hooks))) if save: if not os.path.exists("./plots"): os.makedirs("./plots") plt.savefig("./plots/mean_std_stats.png") else: plt.show() # plot "color dim" that shows abs values of outputs through training time (should be normally distributed - uniform gradient) def color_dim(self, save=True): fig, axes = get_grid(len(self.hooks), figsize=(20, 10)) for ax, h in zip(axes.flatten(), self.hooks): ax.set_ylim(0, 40) ax.imshow(self.get_hist(h), aspect="auto") if save: if not os.path.exists("./plots"): os.makedirs("./plots") plt.savefig("./plots/color_dim.png") else: plt.show() # plot % of dead neurons def dead_chart(self, save=True): fig, axes = get_grid(len(self.hooks), figsize=(20, 10)) for ax, h in zip(axes.flatten(), self.hooks): ax.plot(self.get_min(h)) ax.set_ylim(0, 1) if save: if not os.path.exists("./plots"): os.makedirs("./plots") plt.savefig("./plots/dead_neurons_perc.png") else: plt.show() # ratio of dead neurons (activations near 0) def get_min(self, h): h1 = torch.stack(h.stats[2]).t().float() return h1[0] / h1.sum(0) def get_hist(self, h): return torch.stack(h.stats[2]).t().float().log1p() class LRFinderCB(Callback): """Suggests an approx. good LR for a model. Usually you should choose value where loss is still decreasing (steepest slope), not the lowest value.""" def __init__(self, min_lr=1e-6, max_lr=1, max_mult=3, num_iter=100): self.min_lr = min_lr self.max_lr = max_lr self.max_mult = max_mult self.num_iter = num_iter self.lr_factor = (max_lr / min_lr) ** (1 / num_iter) def before_fit(self, trainer): self.lrs, self.losses = [], [] self.min = math.inf self.i = 0 trainer.opt.param_groups[0]["lr"] = self.min_lr def before_batch(self, trainer): trainer.opt.param_groups[0]["lr"] *= self.lr_factor def after_batch(self, trainer): if not trainer.training: raise CancelEpochException() self.lrs.append(trainer.opt.param_groups[0]["lr"]) loss = trainer.loss.to("cpu").item() self.losses.append(loss) if loss < self.min: self.min = loss self.i += 1 if ( math.isnan(loss) or (loss > self.min * self.max_mult) or (self.i > self.num_iter) ): raise CancelFitException() def plot_lrs(self, log=True, window=None): plt.plot(self.lrs, self.losses) # original loss curve plt.title("LR finder") if log: plt.xscale("log") if window is None: window = self.num_iter // 4 smoothed_losses = np.convolve( self.losses, np.ones(window) / window, mode="valid" ) gradients = np.gradient(smoothed_losses) min_gradient_idx = np.argmin(gradients) self.best_lr = self.lrs[min_gradient_idx + window // 2] plt.plot( self.best_lr, smoothed_losses[min_gradient_idx + window // 2], "ro" ) # recomended LR value point plt.text( self.best_lr, smoothed_losses[min_gradient_idx + window // 2], f"LR: {self.best_lr:.1e}", fontsize=12, ha="center", va="bottom", bbox=dict(facecolor="white"), ) plt.plot( self.lrs[window // 2 : -window // 2 + 1], smoothed_losses, alpha=0.5 ) # smoothed loss curve class AugmentCB(Callback): """Computes augmentation transformations on device (e.g. GPU) for faster training.""" def __init__(self, device="cpu", transform=None): super().__init__() self.device = device self.transform = transform def before_batch(self, trainer): trainer.batch = tuple( [ *[self.transform(t) for t in trainer.batch[: trainer.n_inp]], *trainer.batch[trainer.n_inp :], ] ) class MultiClassAccuracyCB(Callback): def __init__(self, with_wandb=False): self.all_acc = {"train": [], "valid": []} self.with_wandb = with_wandb def before_epoch(self, trainer): self.acc = [] def after_predict(self, trainer): self.acc = [] with torch.inference_mode(): self.acc.append( ( F.softmax(trainer.preds, dim=1).argmax(1) == trainer.batch[trainer.n_inp :][0] ).float() ) def after_epoch(self, trainer): final_acc = torch.hstack(self.acc).mean().item() if trainer.training: if self.with_wandb: wandb.log({"accuracy/train": final_acc}, commit=False) self.all_acc["train"].append(final_acc) else: if self.with_wandb: wandb.log({"accuracy/valid": final_acc}, commit=False) self.all_acc["valid"].append(final_acc) self.acc = [] def plot_acc(self): fig, axes = get_grid(2, (20, 10)) axes[0].plot(self.all_acc["train"]) axes[0].set_title("train acc") axes[1].plot(self.all_acc["valid"]) axes[1].set_title("valid acc")