File size: 6,950 Bytes
f41ef63
2c612d2
f41ef63
2c612d2
f41ef63
2c612d2
 
 
f41ef63
 
2c612d2
f41ef63
2c612d2
 
 
 
 
 
 
 
 
 
f41ef63
 
 
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
 
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
 
2c612d2
 
f41ef63
 
2c612d2
f41ef63
 
53e864e
 
 
2c612d2
 
 
53e864e
f41ef63
2c612d2
f41ef63
 
 
 
 
 
 
 
 
 
2c612d2
 
f41ef63
 
 
733b76c
 
2c612d2
733b76c
 
2c612d2
733b76c
2c612d2
733b76c
2c612d2
733b76c
 
2c612d2
733b76c
 
 
 
f41ef63
 
 
 
 
 
 
 
 
2c612d2
 
 
f41ef63
2c612d2
 
f41ef63
 
2c612d2
f41ef63
 
 
 
 
 
 
 
 
733b76c
f41ef63
 
 
 
 
 
 
 
 
 
 
 
2c612d2
f41ef63
2c612d2
f41ef63
 
 
 
2c612d2
 
 
f41ef63
 
2c612d2
 
 
f41ef63
 
c97e291
f41ef63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dbbb2
 
2c612d2
 
 
07dbbb2
 
 
 
 
 
f41ef63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733b76c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""LangGraph Agent"""

import os

from dotenv import load_dotenv
from langchain.agents import Tool, initialize_agent
from langchain.tools.retriever import create_retriever_tool
from langchain_community.document_loaders import ArxivLoader, WikipediaLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import (
    ChatHuggingFace,
    HuggingFaceEmbeddings,
    HuggingFaceEndpoint,
)
from langchain_openai import ChatOpenAI
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from supabase.client import Client, create_client

load_dotenv()


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    Args:
        a: first int
        b: second int
    """
    return a - b


@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    Args:
        a: first int
        b: second int
    """
    return a % b


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(
        query
    )  # Fixed: pass query as positional argument
    return {"web_results": search_docs}  # Also fixed the return type issue


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted_search_docs}


def test_supabase_connection():
    load_dotenv()

    try:
        supabase = create_client(
            os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
        )

        # Test query
        result = supabase.table("documents").select("*").limit(1).execute()
        print("Connection successful!")
        return True

    except Exception as e:
        print(f"Connection failed: {e}")
        return False


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever
embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2"
)  #  dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
)
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)

test_supabase_connection()

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]


# Build graph function
def build_graph(provider: str = "google"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(
            model="gemini-2.5-flash-preview-05-20", temperature=0
        )
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        llm = ChatGroq(
            model="qwen-qwq-32b", temperature=0
        )  # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "openai":
        # OpenAI
        llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        """Retriever node"""
        try:
            # Use the vector store to find similar questions
            similar_question = vector_store.similarity_search(
                state["messages"][0].content
            )
            if not similar_question:
                raise ValueError("No similar questions found.")
        except Exception as e:
            print(f"Error occurred while searching for similar questions: {e}")
            return {"messages": [sys_msg] + state["messages"]}

        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
        )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()