import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # ✅ Use AutoTokenizer and AutoModel to avoid tokenizer mismatch tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base") model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5-base") # Function to explain code def explain_code(code_snippet): if not code_snippet.strip(): return "❗ Please enter some code." input_text = f"summarize: {code_snippet.strip()}" input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=512) outputs = model.generate(input_ids, max_length=150, num_beams=4, early_stopping=True) explanation = tokenizer.decode(outputs[0], skip_special_tokens=True) return explanation # Gradio Interface demo = gr.Interface( fn=explain_code, inputs=gr.Textbox(lines=15, label="Paste your code here"), outputs=gr.Textbox(label="Explanation"), title="🧠 Code Explainer using CodeT5", description="Paste your code and get a plain English explanation using Salesforce's CodeT5.", theme="default" ) demo.launch()