import gradio as gr from transformers import pipeline # Load pipelines for Canary ASR, LLama3 QA, and VITS TTS asr_pipeline = pipeline("automatic-speech-recognition", model="canary/asr-small-librispeech", device=0) qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa") tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0) # Function to capture audio using Canary ASR def capture_audio(): print("Listening for cue words...") while True: audio_input = asr_pipeline(None)[0]['input_values'] transcript = asr_pipeline(audio_input)[0]['transcription'] if "hey canary" in transcript.lower(): print("Cue word detected!") break print("Listening...") return audio_input # AI assistant function def ai_assistant(audio_input): # Perform automatic speech recognition (ASR) transcript = asr_pipeline(audio_input)[0]['transcription'] # Perform question answering (QA) qa_result = qa_pipeline(question=transcript, context="Insert your context here") # Convert the QA result to speech using text-to-speech (TTS) tts_output = tts_pipeline(qa_result['answer']) return tts_output[0]['audio'] if __name__ == "__main__": # Create a Gradio interface gr.Interface(ai_assistant, inputs=gr.inputs.Audio(capture= capture_audio, label="Speak Here"), outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"), title="AI Assistant", description="An AI Assistant that answers questions based on your speech input.") .launch()