# %% import pandas as pd import numpy as np np.random.seed(24) df = pd.DataFrame({'A': np.linspace(1, 10, 10)}) df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))], axis=1) df.iloc[0, 2] = np.nan df['reaction_show'] = True df # %% s = '' for v in df.reaction_show: s += str(int(v)) s # %% s = '101100' g2p = '' for i in range(len(s)-1): # print(i, i+2, s) # print(s[0:2]) g2p += '1' if '1' in s[i:i+2] else '0' g2p # %% # import plotly.express as px from plotly.offline import init_notebook_mode, iplot import numpy as np init_notebook_mode() x = np.linspace(0, 1) iplot([{'x': x, 'y': 1-np.exp(-x)}]) # # def highlight_greaterthan(s,column): # # is_max = pd.Series(data=False, index=s.index) # # is_max[column] = s.loc[column] >= 1 # # return ['background-color: red' if is_max.any() else '' for v in is_max] # def highlight_greaterthan_1(s): # if s.B > 1.0: # return ['background-color: white']+['background-color: yellow']+['background-color: white']*3 # else: # return ['background-color: white']*5 # df.style.apply(highlight_greaterthan_1, axis=1) # %% from transformers import pipeline classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) emotion = classifier("the sentence") # %% emotion[0] # %% emotion[0][0] # %% sorted(emotion[0], key=lambda x: x['score'], reverse=True) # %%