TEOChat / videollava /eval /eval_geochat_referring.py
jirvin16's picture
Initial commit
134cb11
"""
calc_iou_individual adapted from calculate_mean_ap.py
author: Timothy C. Arlen
date: 28 Feb 2018
"""
import sys
from os.path import dirname, abspath
sys.path.append(dirname(dirname(dirname(dirname(abspath(__file__))))))
from collections import defaultdict
import numpy as np
import json
import ast
import re
import cv2
from shapely import wkt, Polygon, box
from infer_utils import create_mask
from matplotlib.path import Path
from tqdm import tqdm
from eval_referring import referring_expression
import matplotlib.pyplot as plt
import time
import math
from matplotlib.path import Path
def convert_geochat_string(build, img_size=256):
"""
Convert the raw str geochat output {<40><89><56><100>|<57>}, {<0><89><56><100>|<57>}
to a list of rotated bboxes.
"""
build = build.strip('{}')
bbox_segments = build.split("}{")
# Regular expression to find all numbers inside angle brackets
pattern = r"<(\d+)>"
# Extract numbers, convert them to integers, and collect into a list
bboxes = [
list(map(int, re.findall(pattern, segment)))
for segment in bbox_segments
]
rotated_bboxes = []
for bbox in bboxes:
try:
xmin, ymin, xmax, ymax, angle = [float(v) for v in bbox]
except:
print("Warning - Malformed bbox: ", bbox)
print("Original string: ", build)
print()
continue
# Convert percentages to pixel coordinates
xmin = xmin * img_size / 100
ymin = ymin * img_size / 100
xmax = xmax * img_size / 100
ymax = ymax * img_size / 100
# Calculate rectangle dimensions
rect_width = xmax - xmin
rect_height = ymax - ymin
center_x = xmin + rect_width / 2
center_y = ymin + rect_height / 2
# Calculate corners before rotation
corners = np.array([
[xmin, ymin],
[xmax, ymin],
[xmax, ymax],
[xmin, ymax]
])
# Rotate corners
angle_rad = math.radians(angle)
cos_angle = math.cos(angle_rad)
sin_angle = math.sin(angle_rad)
rotated_corners = []
for x, y in corners:
tx = x - center_x
ty = y - center_y
rotated_x = tx * cos_angle - ty * sin_angle + center_x
rotated_y = tx * sin_angle + ty * cos_angle + center_y
rotated_corners.append([rotated_x, rotated_y])
rotated_bboxes.append(np.array(rotated_corners))
return rotated_bboxes
def create_geochat_mask(buildings, img_size=(256, 256)):
"""
Given a list of buildings in an image, this function
- creates an img_size * img_size numpy array for the image
- returns the mask for all buildings
Input:
- buildings: List of geochat strings representing buildings
- img_size: Tuple indicating the size of the image (height, width)
"""
mask = np.zeros(img_size, np.uint8)
# Fill in with ones the pixels that are inside the buildings (rotated bboxes)
for bbox in buildings:
path = Path(bbox)
x, y = np.meshgrid(np.arange(img_size[1]), np.arange(img_size[0]))
points = np.vstack((x.flatten(), y.flatten())).T
mask[path.contains_points(points).reshape(img_size)] = 1
return mask
def calc_iou_individual(pred_box, gt_box):
"""Calculate IoU of single predicted and ground truth box
Args:
pred_box (list of floats): location of predicted object as
[xmin, ymin, xmax, ymax]
gt_box (list of floats): location of ground truth object as
[xmin, ymin, xmax, ymax]
Returns:
float: value of the IoU for the two boxes.
Raises:
AssertionError: if the box is obviously malformed
"""
x1_t, y1_t, x2_t, y2_t = gt_box
try:
x1_p, y1_p, x2_p, y2_p = pred_box
except:
return 0.0
if (x1_p > x2_p) or (y1_p > y2_p):
print("Prediction box is malformed? pred box: {}".format(pred_box))
if (x1_t > x2_t) or (y1_t > y2_t):
print("Ground Truth box is malformed? true box: {}".format(gt_box))
if (x2_t < x1_p or x2_p < x1_t or y2_t < y1_p or y2_p < y1_t):
return 0.0
far_x = np.min([x2_t, x2_p])
near_x = np.max([x1_t, x1_p])
far_y = np.min([y2_t, y2_p])
near_y = np.max([y1_t, y1_p])
inter_area = (far_x - near_x + 1) * (far_y - near_y + 1)
true_box_area = (x2_t - x1_t + 1) * (y2_t - y1_t + 1)
pred_box_area = (x2_p - x1_p + 1) * (y2_p - y1_p + 1)
iou = inter_area / (true_box_area + pred_box_area - inter_area)
return iou
def get_single_image_bound_results(gt_wkts, pred_geochat_string, img_size=256):
"""
Calculates upper bound and lower bound number of true_pos, false_pos, false_neg from single batch of boxes.
Args:
gt_wkts (list of strs): list of wkt strings of input polygons, scaled to raw pixel value
pred_boxes (list of lists): list of list of boxes, where each box is formatted
as [x_min, y_min, x_max, y_max] on scale from 0-100
img_size (int): dimensions of the image. defaults to 256.
Returns:
tuple of dicts: true positives (int), false positives (int), false negatives (int)
"""
if isinstance(gt_wkts, str):
gt_polygons = [wkt.loads(gt_wkts)]
else:
gt_polygons = [wkt.loads(gt_wkt) for gt_wkt in gt_wkts]
lb_preds = convert_geochat_string(pred_geochat_string, img_size)
# get mask of all gt_polygons and lb_preds
gt_mask = create_mask(gt_polygons, (img_size, img_size))
lb_preds_mask = create_geochat_mask(lb_preds, (img_size, img_size))
# get lower bound intersection and union masks
intersection = np.logical_and(gt_mask, lb_preds_mask)
union = np.logical_or(gt_mask, lb_preds_mask)
# compute lb metrics
fp = np.sum(np.logical_and(lb_preds_mask, np.logical_not(gt_mask)))
tp = np.sum(np.logical_and(lb_preds_mask, gt_mask))
fn = np.sum(np.logical_and(np.logical_not(lb_preds_mask), gt_mask))
lb_stats = {'true_pos': tp, 'false_pos': fp, 'false_neg': fn, 'intersection': np.sum(intersection), 'union': np.sum(union)}
# get upper bound intersection and union masks
ub_pred_mask = np.logical_and(gt_mask, lb_preds_mask)
intersection = np.logical_and(ub_pred_mask, gt_mask)
union = np.logical_or(gt_mask, ub_pred_mask)
# compute ub metrics
ub_fp = np.sum(np.logical_and(ub_pred_mask, np.logical_not(gt_mask)))
ub_tp = np.sum(np.logical_and(ub_pred_mask, gt_mask))
ub_fn = np.sum(np.logical_and(np.logical_not(ub_pred_mask), gt_mask))
ub_stats = {'true_pos': ub_tp, 'false_pos': ub_fp, 'false_neg': ub_fn, 'intersection': np.sum(intersection), 'union': np.sum(union)}
return lb_stats, ub_stats
def get_geochat_dataset(image_id):
if image_id.startswith("P"):
dataset = "SOTA"
elif image_id.startswith("train"):
dataset = "FAST"
else:
dataset = "SIOR"
return dataset
def calc_precision_recall(img_results):
"""Calculates precision and recall from the set of images
Args:
img_results (dict): dictionary formatted like:
{
'img_id1': {'true_pos': int, 'false_pos': int, 'false_neg': int},
'img_id2': ...
...
}
Returns:
tuple: of floats of (precision, recall)
"""
true_pos = 0; false_pos = 0; false_neg = 0
for _, res in img_results.items():
true_pos += res['true_pos']
false_pos += res['false_pos']
false_neg += res['false_neg']
try:
precision = true_pos/(true_pos + false_pos)
except ZeroDivisionError:
precision = 0.0
try:
recall = true_pos/(true_pos + false_neg)
except ZeroDivisionError:
recall = 0.0
return (precision, recall)
DIMENSIONS = {'FAST': 600,
'SIOR': 800,
'SOTA': 1024}
def referring_expression(answer_path, dataset, verbose=False, saving_path_root=None, img_size=256):
# Replace with the path to the answers file
if type(answer_path) == dict:
results = answer_path
else:
with open(answer_path) as json_data:
results = json.load(json_data)
img_results = {}
ub_results = {}
lb_results = {}
num_bboxes = 0
# Loop over results and get precision, recall overall
for id, result in tqdm(results.items()):
if dataset == "geochat_xbd":
pred = result['predicted']
dataset = get_geochat_dataset(id)
img_size = (DIMENSIONS[dataset])
pred = convert_geochat_string(pred, img_size)
ground_truth = result['ground_truth']
ground_truth = np.array(ground_truth)
num_bboxes += len(ground_truth)
img_results[id] = get_single_image_results(ground_truth, pred, iou_thr=0.5)
continue
try:
if 'referring_expression' not in result['task']:
continue # no bounding box outputs for temporal_referring_expression
except:
pass
# TODO: clean the following todos
# TODO: LOOP THROUGH IDENTIFY TASKS/QUESTIONS IN THE DATASET
# TODO: HANDLE WHEN THERE ARE NO BOUNDING BOXES IN GROUND TRUTH for auxiliary tasks
if not result['original_input_polygon']:
first_open_bracket_ind = result["predicted"].find("{")
last_close_bracket_ind = result["predicted"].rfind("}")
if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
else:
parsed_predicted = ""
predicted_boxes = convert_geochat_string(parsed_predicted)
# If ground truth contains no boxes: all predictions are false positives
false_pos = len(predicted_boxes)
false_pos_pixels = np.sum(create_geochat_mask(predicted_boxes))
img_results[id] = {'true_pos': 0, 'false_pos': false_pos, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
ub_results[id] = {'true_pos': 0, 'false_pos': false_pos_pixels, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
lb_results[id] = {'true_pos': 0, 'false_pos': false_pos_pixels, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
continue
else: # Ground truth contains boxes: find predicted Geochat boxes
first_open_bracket_ind = result["predicted"].find("{")
last_close_bracket_ind = result["predicted"].rfind("}")
if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
else:
parsed_predicted = ""
gt_wkts = result['original_input_polygon']
lb_results[id], ub_results[id] = get_single_image_bound_results(gt_wkts, parsed_predicted)
if len(ub_results) != 0:
ub_intersection = np.sum([res['intersection'] for res in ub_results.values()])
ub_union = np.sum([res['union'] for res in ub_results.values()])
lb_intersection = np.sum([res['intersection'] for res in lb_results.values()])
lb_union = np.sum([res['union'] for res in lb_results.values()])
print("Upper bound IOU: ", ub_intersection / ub_union if ub_union != 0 else 0)
print("Lower bound IOU: ", lb_intersection / lb_union if lb_union != 0 else 0)
ub_precision, ub_recall = calc_precision_recall(ub_results)
lb_precision, lb_recall = calc_precision_recall(lb_results)
print('Lower bound precision: ', lb_precision)
print('Lower bound recall: ', lb_recall)
print("Upper bound F1: ", 2 * (ub_precision * ub_recall) / (ub_precision + ub_recall) if (ub_precision + ub_recall) != 0 else 0)
print("Lower bound F1: ", 2 * (lb_precision * lb_recall) / (lb_precision + lb_recall) if (lb_precision + lb_recall) != 0 else 0)
print("Acc@0.5: ", np.sum([res['true_pos'] for res in img_results.values()]) / num_bboxes)
if type(answer_path) == dict:
return
if saving_path_root:
with open(f"{saving_path_root}/referring_expression_scores.json", 'w') as f:
json.dump(img_results, f)
if __name__ == '__main__':
answer_path = "scripts/geovlm/eval/xBD/answers/ckpt14000-geochat-bench_interleave_test.json"
referring_expression(answer_path, dataset="geochat_xbd")
#answer_path = "scripts/geochat/eval/xBD/geochat_xbd_test_auxiliary_dict.json"
# referring_expression(answer_path, dataset="xbd")