import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Removed BitsAndBytesConfig as we are not quantizing for CPU from peft import PeftModel import torch import os # Ensure os is imported for potential path joining if needed # --- Configuration --- base_model_id = "Qwen/Qwen-1_8B-Chat" lora_adapter_id = "jinv2/qwen-1_8b-hemiplegia-lora" # Your HF Model ID # device = "cuda" if torch.cuda.is_available() else "cpu" # Will always be "cpu" on free tier device = "cpu" # Explicitly set to CPU for this configuration print(f"Using device: {device}") # --- Load Model and Tokenizer --- print("Loading tokenizer...") try: # Try loading tokenizer from your LoRA repo first, as it might contain specific settings tokenizer = AutoTokenizer.from_pretrained(lora_adapter_id, trust_remote_code=True) print(f"Successfully loaded tokenizer from {lora_adapter_id}.") except Exception as e_lora_tok: print(f"Could not load tokenizer from {lora_adapter_id} (Error: {e_lora_tok}), falling back to {base_model_id}.") tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) # Set pad_token if not already set if tokenizer.pad_token_id is None: if tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.pad_token = tokenizer.eos_token print(f"Set tokenizer.pad_token_id to eos_token_id: {tokenizer.pad_token_id}") else: # Fallback for Qwen, ensure this ID is correct for your Qwen version try: qwen_eos_id = tokenizer.convert_tokens_to_ids("<|endoftext|>") tokenizer.pad_token_id = qwen_eos_id tokenizer.pad_token = "<|endoftext|>" print(f"Set tokenizer.pad_token_id to ID of '<|endoftext|>: {tokenizer.pad_token_id}") except KeyError: tokenizer.pad_token_id = 0 # Absolute fallback, very risky tokenizer.pad_token = tokenizer.decode([0]) print(f"CRITICAL WARNING: Could not set pad_token_id reliably. Set to 0 ('{tokenizer.pad_token}').") tokenizer.padding_side = "left" # Important for generation print("Loading base model (NO QUANTIZATION as running on CPU)...") # IMPORTANT: For CPU, we cannot use bitsandbytes 4-bit quantization. # We load the model in its original precision (or try float16/bfloat16 if memory allows and CPU supports). # This will be much slower and more memory-intensive. try: base_model = AutoModelForCausalLM.from_pretrained( base_model_id, trust_remote_code=True, torch_dtype=torch.float32, # Use float32 for CPU for max compatibility, bfloat16 might work on some newer CPUs # device_map="auto" will likely map to CPU. Can be explicit: device_map="cpu" device_map={"":device} # Ensure model parts are on the correct device ) print("Base model loaded.") except Exception as e_load_model: print(f"Error loading base model: {e_load_model}") raise # Re-raise the exception to stop the app if model loading fails print(f"Loading LoRA adapter: {lora_adapter_id}...") try: # For CPU, PEFT should still work. The model should be on the CPU before applying adapter. model = PeftModel.from_pretrained(base_model, lora_adapter_id) model.eval() # Set to evaluation mode model = model.to(device) # Ensure the final PEFT model is on the CPU print("LoRA adapter loaded and model is on CPU, ready for inference.") except Exception as e_load_adapter: print(f"Error loading LoRA adapter: {e_load_adapter}") raise # --- Prediction Function --- def get_response(user_query): system_prompt_content = "你是一个专注于偏瘫、脑血栓、半身不遂领域的医疗问答助手。" prompt = f"<|im_start|>system\n{system_prompt_content}<|im_end|>\n<|im_start|>user\n{user_query}<|im_end|>\n<|im_start|>assistant\n" # Ensure inputs are on the same device as the model inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512-150).to(model.device) eos_token_ids_list = [] if isinstance(tokenizer.eos_token_id, int): eos_token_ids_list.append(tokenizer.eos_token_id) try: im_end_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>") if im_end_token_id not in eos_token_ids_list: eos_token_ids_list.append(im_end_token_id) except KeyError: pass # Fallback if eos_token_ids_list is still empty if not eos_token_ids_list: if tokenizer.eos_token_id is not None: eos_token_ids_list = [tokenizer.eos_token_id] else: print("Warning: EOS token ID list is empty and eos_token_id is None. Generation might not stop correctly.") # Attempt to use a known Qwen EOS ID if possible, otherwise generation might be problematic. try: eos_token_ids_list = [tokenizer.convert_tokens_to_ids("<|endoftext|>")] except KeyError: eos_token_ids_list = [tokenizer.vocab_size - 1 if tokenizer.vocab_size else 0] # Very risky fallback print(f"Generating response for query: '{user_query}' on device: {model.device}") with torch.no_grad(): # Inference doesn't need gradient calculation outputs = model.generate( **inputs, max_new_tokens=150, pad_token_id=tokenizer.pad_token_id, eos_token_id=eos_token_ids_list if eos_token_ids_list else None, temperature=0.7, top_p=0.9, do_sample=True, num_beams=1 ) response_text = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) print(f"Raw response: '{response_text}'") return response_text.strip() # --- Gradio Interface --- iface = gr.Interface( fn=get_response, inputs=gr.Textbox(lines=3, placeholder="请输入您关于偏瘫、脑血栓或半身不遂的问题...", label="您的问题 (Your Question)"), outputs=gr.Textbox(lines=5, label="模型回答 (Model Response)"), title="偏瘫脑血栓问答助手 (CPU Version - Expect Slow Response)", description=( "由 Qwen-1.8B-Chat LoRA 微调得到的模型 (jinv2/qwen-1_8b-hemiplegia-lora)。与天算AI相关。\n" "**重要:此版本运行在 CPU 上,无量化,响应会非常慢。医疗建议请咨询专业医生。**" ), examples=[ ["偏瘫患者的早期康复锻炼有哪些?"], ["什么是脑血栓?"], ["中风后如何进行语言恢复训练?"] ], allow_flagging="never" ) if __name__ == "__main__": iface.launch() # debug=True can be helpful for local testing but not for Spaces deployment