import os try: import perspective2d except: os.system(f"pip install git+https://github.com/jinlinyi/PerspectiveFields.git@v1.0.0") import gradio as gr import cv2 import copy import numpy as np import os.path as osp from datetime import datetime import torch from PIL import Image, ImageDraw from glob import glob from perspective2d import PerspectiveFields from perspective2d.utils import draw_perspective_fields, draw_from_r_p_f_cx_cy from perspective2d.perspectivefields import model_zoo title = "Perspective Fields Demo" description = """
Project Page | Paper | Code | Video
Try our Gradio demo for Perspective Fields for single image camera calibration. You can click on one of the provided examples or upload your own image.
Perspective Fields for Single Image Camera Calibrations | Github Repo
""" def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None): height = img.shape[0] width = img.shape[1] if target_height is None: factor = target_width / width elif target_width is None: factor = target_height / height else: factor = max(target_width / width, target_height / height) if factor == target_width / width: target_height = int(height * factor) else: target_width = int(width * factor) img = cv2.resize(img, (target_width, target_height)) for key in field: if key not in ['up', 'lati']: continue tmp = field[key].numpy() transpose = len(tmp.shape) == 3 if transpose: tmp = tmp.transpose(1,2,0) tmp = cv2.resize(tmp, (target_width, target_height)) if transpose: tmp = tmp.transpose(2,0,1) field[key] = torch.tensor(tmp) return img, field def inference(img_rgb, model_type): if model_type is None: return None, "" pf_model = PerspectiveFields(model_type).eval().to(device) pred = pf_model.inference(img_bgr=img_rgb[...,::-1]) img_h = img_rgb.shape[0] field = { 'up': pred['pred_gravity_original'].cpu().detach(), 'lati': pred['pred_latitude_original'].cpu().detach(), } img_rgb, field = resize_fix_aspect_ratio(img_rgb, field, 640) if not model_zoo[model_type]['param']: pred_vis = draw_perspective_fields( img_rgb, field['up'], torch.deg2rad(field['lati']), color=(0,1,0), ) param = "Not Implemented" else: r_p_f_rad = np.radians( [ pred['pred_roll'].cpu().item(), pred['pred_pitch'].cpu().item(), pred['pred_general_vfov'].cpu().item(), ] ) cx_cy = [ pred['pred_rel_cx'].cpu().item(), pred['pred_rel_cy'].cpu().item(), ] param = f"roll {pred['pred_roll'].cpu().item() :.2f}\npitch {pred['pred_pitch'].cpu().item() :.2f}\nvertical fov {pred['pred_general_vfov'].cpu().item() :.2f}\nfocal_length {pred['pred_rel_focal'].cpu().item()*img_h :.2f}\n" param += f"principal point {pred['pred_rel_cx'].cpu().item() :.2f} {pred['pred_rel_cy'].cpu().item() :.2f}" pred_vis = draw_from_r_p_f_cx_cy( img_rgb, *r_p_f_rad, *cx_cy, 'rad', up_color=(0,1,0), ) print(f"""time {datetime.now().strftime("%H:%M:%S")} img.shape {img_rgb.shape} model_type {model_type} param {param} """ ) return Image.fromarray(pred_vis), param examples = [] for img_name in glob('assets/imgs/*.*g'): examples.append([img_name]) print(examples) device = 'cuda' if torch.cuda.is_available() else 'cpu' info = """Select model\n""" gr.Interface( fn=inference, inputs=[ "image", gr.Radio( list(model_zoo.keys()), value=list(sorted(model_zoo.keys()))[0], label="Model", info=info, ), ], outputs=[gr.Image(label='Perspective Fields'), gr.Textbox(label='Pred Camera Parameters')], title=title, description=description, article=article, examples=examples, ).launch()