import requests import tensorflow as tf import gradio as gr inception_net = tf.keras.applications.MobileNetV2() # load the model response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(1000)} title = "Image Classifiction + Interpretation" description = """ Task: Image Classification\n Dataset: COCO 2017, 1,000 classes\n Model: https://huggingface.co/google/mobilenet_v2_1.0_224\n Developer: Google \n """ image = gr.Image(shape=(224, 224)) label = gr.Label(num_top_classes=3) examples = [ ["buger.jpg"], ["goldfish.jpg"], ["lake-house.jpg"], ["truck.jpg"], ] demo = gr.Interface( fn=classify_image, inputs=image, outputs=label, interpretation="default", title=title, description=description, examples=examples, theme="freddyaboulton/dracula_revamped", ) demo.launch()