import torch import numpy as np from PIL import Image from typing import Optional, Union, Tuple, List from tqdm import tqdm import os from diffusers import DDIMInverseScheduler,DPMSolverMultistepInverseScheduler class Inversion: def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): timestep, next_timestep = min( timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] beta_prod_t = 1 - alpha_prod_t next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction return next_sample @torch.no_grad() def get_noise_pred_single(self, latents, t, context,cond=True,both=False): added_cond_id=1 if cond else 0 do_classifier_free_guidance=False latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if both is False: added_cond_kwargs = {"text_embeds": self.add_text_embeds[added_cond_id].unsqueeze(0).repeat(self.inv_batch_size,1), "time_ids": self.add_time_ids[added_cond_id].unsqueeze(0).repeat(self.inv_batch_size,1)} else: added_cond_kwargs = {"text_embeds": self.add_text_embeds, "time_ids": self.add_time_ids} noise_pred = self.model.unet( latent_model_input, t, encoder_hidden_states=context, cross_attention_kwargs=None, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] return noise_pred @torch.no_grad() def latent2image(self, latents, return_type='np'): latents = 1 / self.model.vae.config.scaling_factor * latents.detach() self.model.vae.to(dtype=torch.float32) image = self.model.vae.decode(latents)['sample'] if return_type == 'np': image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() image = (image * 255).astype(np.uint8) return image @torch.no_grad() def image2latent(self, image): with torch.no_grad(): if type(image) is Image: image = np.array(image) else: if image.ndim==3: image=np.expand_dims(image,0) image = torch.from_numpy(image).float() / 127.5 - 1 image = image.permute(0, 3, 1, 2).to(self.device) latents=[] for i,_ in enumerate(image): latent=self.model.vae.encode(image[i:i+1])['latent_dist'].mean latents.append(latent) latents=torch.stack(latents).squeeze(1) latents = latents * self.model.vae.config.scaling_factor return latents @torch.no_grad() def init_prompt( self, prompt: Union[str, List[str]], original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, ): original_size = original_size or (1024, 1024) target_size = target_size or (1024, 1024) # 3. Encode input prompt do_classifier_free_guidance=True ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.model.encode_prompt_not_zero_uncond( prompt, self.model.device, 1, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, lora_scale=None, ) prompt_embeds=prompt_embeds[:self.inv_batch_size] negative_prompt_embeds=negative_prompt_embeds[:self.inv_batch_size] pooled_prompt_embeds=pooled_prompt_embeds[:self.inv_batch_size] negative_pooled_prompt_embeds=negative_pooled_prompt_embeds[:self.inv_batch_size] # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds add_time_ids = self.model._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(self.device) self.add_text_embeds = add_text_embeds.to(self.device) self.add_time_ids = add_time_ids.to(self.device).repeat(self.inv_batch_size * 1, 1) self.prompt_embeds=prompt_embeds self.negative_prompt_embeds=negative_prompt_embeds self.pooled_prompt_embeds=pooled_prompt_embeds self.negative_pooled_prompt_embeds=negative_pooled_prompt_embeds self.prompt = prompt self.context=prompt_embeds @torch.no_grad() def ddim_loop(self, latent): uncond_embeddings, cond_embeddings = self.context.chunk(2) all_latent = [latent] latent = latent.clone().detach() extra_step_kwargs = self.model.prepare_extra_step_kwargs(self.generator, self.eta) if isinstance(self.inverse_scheduler,DDIMInverseScheduler): extra_step_kwargs.pop("generator") for i in tqdm(range(self.num_ddim_steps)): use_inv_sc=False if use_inv_sc: t = self.inverse_scheduler.timesteps[i] noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings,cond=True) latent = self.inverse_scheduler.step(noise_pred, t, latent, **extra_step_kwargs, return_dict=False)[0] else: t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1] noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings,cond=True) latent = self.next_step(noise_pred, t, latent) all_latent.append(latent) return all_latent @property def scheduler(self): return self.model.scheduler @torch.no_grad() def ddim_inversion(self, image): latent = self.image2latent(image) image_rec = self.latent2image(latent) ddim_latents = self.ddim_loop(latent.to(self.model.unet.dtype)) return image_rec, ddim_latents from typing import Union, List, Dict import numpy as np def invert(self, image_gt, prompt: Union[str, List[str]], verbose=True, inv_output_pos=None, inv_batch_size=1): self.inv_batch_size = inv_batch_size self.init_prompt(prompt) out_put_pos = 0 if inv_output_pos is None else inv_output_pos self.out_put_pos = out_put_pos if verbose: print("DDIM inversion...") image_rec, ddim_latents = self.ddim_inversion(image_gt) if verbose: print("Done.") return (image_gt, image_rec), ddim_latents[-1], ddim_latents, self.prompt_embeds[self.prompt_embeds.shape[0]//2:], self.pooled_prompt_embeds def __init__(self, model,num_ddim_steps,generator=None,scheduler_type="DDIM"): self.model = model self.tokenizer = self.model.tokenizer self.num_ddim_steps=num_ddim_steps if scheduler_type == "DDIM": self.inverse_scheduler=DDIMInverseScheduler.from_config(self.model.scheduler.config) self.inverse_scheduler.set_timesteps(num_ddim_steps) elif scheduler_type=="DPMSolver": self.inverse_scheduler=DPMSolverMultistepInverseScheduler.from_config(self.model.scheduler.config) self.inverse_scheduler.set_timesteps(num_ddim_steps) self.model.scheduler.set_timesteps(num_ddim_steps) self.model.vae.to(dtype=torch.float32) self.prompt = None self.context = None self.device=self.model.unet.device self.generator=generator self.eta=0.0 def load_512(image_path, left=0, right=0, top=0, bottom=0): if type(image_path) is str: image = np.array(Image.open(image_path))[:, :, :3] else: image = image_path h, w, c = image.shape left = min(left, w - 1) right = min(right, w - left - 1) top = min(top, h - left - 1) bottom = min(bottom, h - top - 1) image = image[top:h - bottom, left:w - right] h, w, c = image.shape if h < w: offset = (w - h) // 2 image = image[:, offset:offset + h] elif w < h: offset = (h - w) // 2 image = image[offset:offset + w] image = np.array(Image.fromarray(image).resize((512, 512))) return image def load_1024_mask(image_path, left=0, right=0, top=0, bottom=0,target_H=128,target_W=128): if type(image_path) is str: image = np.array(Image.open(image_path))[:, :, np.newaxis] else: image = image_path if len(image.shape) == 4: image = image[:, :, :, 0] h, w, c = image.shape left = min(left, w - 1) right = min(right, w - left - 1) top = min(top, h - left - 1) bottom = min(bottom, h - top - 1) image = image[top:h - bottom, left:w - right] h, w, c = image.shape if h < w: offset = (w - h) // 2 image = image[:, offset:offset + h] elif w < h: offset = (h - w) // 2 image = image[offset:offset + w] image=image.squeeze() image = np.array(Image.fromarray(image).resize((target_H, target_W))) return image def load_1024(image_path, left=0, right=0, top=0, bottom=0): if type(image_path) is str: image = np.array(Image.open(image_path).resize((1024, 1024)))[:, :, :3] else: image = image_path h, w, c = image.shape left = min(left, w - 1) right = min(right, w - left - 1) top = min(top, h - left - 1) bottom = min(bottom, h - top - 1) image = image[top:h - bottom, left:w - right] h, w, c = image.shape if h < w: offset = (w - h) // 2 image = image[:, offset:offset + h] elif w < h: offset = (h - w) // 2 image = image[offset:offset + w] image = np.array(Image.fromarray(image).resize((1024, 1024))) return image