import matplotlib.pyplot as plt import numpy as np from six import BytesIO from PIL import Image import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils from object_detection.utils import ops as utils_op import tarfile import wget import gradio as gr from huggingface_hub import snapshot_download import os PATH_TO_LABELS = 'data/label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def pil_image_as_numpy_array(pilimg): img_array = tf.keras.utils.img_to_array(pilimg) img_array = np.expand_dims(img_array, axis=0) return img_array def load_image_into_numpy_array(path): image = None image_data = tf.io.gfile.GFile(path, 'rb').read() image = Image.open(BytesIO(image_data)) return pil_image_as_numpy_array(image) def load_model(): model_dir = 'saved_model' detection_model = tf.saved_model.load(str(model_dir)) return detection_model def predict(image_np): image_np = pil_image_as_numpy_array(image_np) results = detection_model(image_np) # different object detection models have additional results result = {key:value.numpy() for key,value in results.items()} label_id_offset = 0 image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result['detection_boxes'][0], (result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.60, agnostic_mode=False, line_thickness=2) result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) return result_pil_img def predict2(pilimg): image_np = pil_image_as_numpy_array(pilimg) return predict2(image_np) detection_model = load_model() Specify paths to example images example_image_paths = ["test1.jpg"] # Create a list of example inputs and outputs using a for loop example_inputs = [Image.open(path) for path in example_image_paths] example_outputs = [predict2(input_image) for input_image in example_inputs] # Create the Gradio interface with examples using a for loop examples = [[example_inputs[i], example_outputs[i]] for i in range(len(example_inputs))] iface = gr.Interface(fn=predict, inputs=gr.Image(label='Upload an expressway image', type="pil"), outputs=gr.Image(type="pil"), title='Blue and Yellow Taxi detection using live traffic conditions along expressways (data.gov.sg)', example=examples ).launch(share=True)