import matplotlib.pyplot as plt import numpy as np from six import BytesIO from PIL import Image import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils from object_detection.utils import ops as utils_op import tarfile import wget import gradio as gr from huggingface_hub import snapshot_download import os PATH_TO_LABELS = 'data/label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def pil_image_as_numpy_array(pilimg): img_array = tf.keras.utils.img_to_array(pilimg) img_array = np.expand_dims(img_array, axis=0) return img_array def load_image_into_numpy_array(path): image = None image_data = tf.io.gfile.GFile(path, 'rb').read() image = Image.open(BytesIO(image_data)) return pil_image_as_numpy_array(image) def load_model(): download_dir = snapshot_download(REPO_ID) saved_model_dir = os.path.join(download_dir, "saved_model") detection_model = tf.saved_model.load(saved_model_dir) return detection_model # samples_folder = 'test_samples # image_path = 'test_samples/sample_balloon.jpeg # def predict(pilimg): image_np = pil_image_as_numpy_array(pilimg) return predict2(image_np) def predict2(image_np): results = detection_model(image_np) # different object detection models have additional results result = {key:value.numpy() for key,value in results.items()} label_id_offset = 0 image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result['detection_boxes'][0], (result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.60, agnostic_mode=False, line_thickness=2) result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) return result_pil_img def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index): video_reader = cv2.VideoCapture(video_in_filepath) frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = video_reader.get(cv2.CAP_PROP_FPS) video_writer = cv2.VideoWriter( video_out_filepath, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_w, frame_h) ) while True: ret, frame = video_reader.read() if not ret: break # Break the loop if the video is finished processed_frame = predict(frame) processed_frame_np = np.array(processed_frame) video_writer.write(processed_frame_np) # Release camera and close windows video_reader.release() video_writer.release() cv2.destroyAllWindows() cv2.waitKey(1) video_reader.release() video_writer.release() cv2.destroyAllWindows() cv2.waitKey(1) # Function to process a video def process_video(video_path): output_path = "output_video.mp4" # Output path for the processed video predict_on_video(video_path, output_path, detection_model, category_index) return output_path # Specify paths to example images sample_images = [["00000031.jpg"], ["00000053.jpg"], ["00000057.jpg"], ["00000078.jpg"], ["00000854.jpg"], ["00000995.jpg"], ["00001052.jpg"],["00001444.jpg"],["00001452.jpg"] ] REPO_ID = "jiawenchim/iti107model" detection_model = load_model() # pil_image = Image.open(image_path) # image_arr = pil_image_as_numpy_array(pil_image) # predicted_img = predict(image_arr) # predicted_img.save('predicted.jpg') tab1 = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), examples=sample_images, title="Object Detection (Battery and Dice)" ).launch(share=True) tab2 = gr.Interface( fn=process_video, inputs=gr.File(label="Upload a video"), outputs=gr.File(label="output"), title='Video Processing', examples=[["Three Dice Trick.mp4"],["Look at the fork and battery-in power.mp4"] ) iface = gr.TabbedInterface([tab1, tab2], title='Battery and Dice detection') iface.launch(share=True)