import torch from diffusers import StableVideoDiffusionPipeline from PIL import Image import numpy as np import cv2 import rembg import argparse import imageio import os def add_margin(pil_img, top, right, bottom, left, color): width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result def resize_image(image, output_size=(1024, 576)): image = image.resize((output_size[1],output_size[1])) pad_size = (output_size[0]-output_size[1]) //2 image = add_margin(image, 0, pad_size, 0, pad_size, tuple(np.array(image)[0,0])) return image def load_image(file, W, H, bg='white'): # load image print(f'[INFO] load image from {file}...') img = cv2.imread(file, cv2.IMREAD_UNCHANGED) bg_remover = rembg.new_session() img = rembg.remove(img, session=bg_remover) img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA) img = img.astype(np.float32) / 255.0 input_mask = img[..., 3:] # white bg if bg == 'white': input_img = img[..., :3] * input_mask + (1 - input_mask) elif bg == 'black': input_img = img[..., :3] else: raise NotImplementedError # bgr to rgb input_img = input_img[..., ::-1].copy() input_img = Image.fromarray(np.uint8(input_img*255)) return input_img def load_image_w_bg(file, W, H): # load image print(f'[INFO] load image from {file}...') img = cv2.imread(file, cv2.IMREAD_UNCHANGED) img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA) img = img.astype(np.float32) / 255.0 input_img = img[..., :3] # bgr to rgb input_img = input_img[..., ::-1].copy() input_img = Image.fromarray(np.uint8(input_img*255)) return input_img def gen_vid(input_path, seed, bg, is_pad): name = input_path.split('/')[-1].split('.')[0] input_dir = os.path.dirname(input_path) pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16" ) # pipe.enable_model_cpu_offload() pipe.to("cuda") if is_pad: height, width = 576, 1024 else: height, width = 512, 512 if seed is None: for bg in ['white', 'black', 'orig']: if bg == 'orig': if 'rgba' in name: continue image = load_image_w_bg(input_path, width, height) else: image = load_image(input_path, width, height, bg) if is_pad: image = resize_image(image, output_size=(width, height)) for seed in range(20): generator = torch.manual_seed(seed) frames = pipe(image, height, width, generator=generator).frames[0] imageio.mimwrite(f"{input_dir}/videos/{name}_{bg}_{seed:03}.mp4", frames, fps=7) else: if bg == 'orig': if 'rgba' in name: raise ValueError image = load_image_w_bg(input_path, width, height) else: image = load_image(input_path, width, height, bg) if is_pad: image = resize_image(image, output_size=(width, height)) generator = torch.manual_seed(seed) frames = pipe(image, height, width, generator=generator).frames[0] imageio.mimwrite(f"{input_dir}/{name}_generated.mp4", frames, fps=7) os.makedirs(f"{input_dir}/{name}_frames", exist_ok=True) for idx, img in enumerate(frames): if is_pad: img = img.crop(((width-height) //2, 0, width - (width-height) //2, height)) img.save(f"{input_dir}/{name}_frames/{idx:03}.png") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--path", type=str, required=True) parser.add_argument("--seed", type=int, default=None) parser.add_argument("--bg", type=str, default='white') parser.add_argument("--is_pad", type=bool, default=False) args, extras = parser.parse_known_args() gen_vid(args.path, args.seed, args.bg, args.is_pad)