from __future__ import annotations import collections from math import sqrt import scipy.stats import torch from nltk.util import ngrams from tokenizers import Tokenizer from torch import Tensor from transformers import LogitsProcessor from normalizers import normalization_strategy_lookup class WatermarkBase: def __init__( self, vocab: list[int] = None, gamma: float = 0.5, delta: float = 2.0, seeding_scheme: str = "simple_1", hash_key: int = 15485863, # 只需要一个大素数就可以创建一个具有足够位宽的rng种子 extra_salt: int = 0, select_green_tokens: bool = True, ): # 水印参数 self.vocab = vocab self.vocab_size = len(vocab) self.gamma = gamma self.delta = delta self.seeding_scheme = seeding_scheme self.rng = None self.hash_key = hash_key self.extra_salt = extra_salt self.select_green_tokens = select_green_tokens def _seed_rng(self, input_ids: torch.LongTensor, seeding_scheme: str = None) -> None: # 可以选择覆盖种子设定方案,但默认情况下使用实例属性 if seeding_scheme is None: seeding_scheme = self.seeding_scheme if seeding_scheme == "simple_1": assert input_ids.shape[ -1] >= 1, f"seeding_scheme={seeding_scheme} requires at least a 1 token prefix sequence to seed rng" prev_token = input_ids[-1].item() self.rng.manual_seed(self.hash_key * prev_token + self.extra_salt) else: raise NotImplementedError(f"Unexpected seeding_scheme: {seeding_scheme}") return def _get_greenlist_ids(self, input_ids: torch.LongTensor) -> list[int]: self._seed_rng(input_ids) greenlist_size = int(self.vocab_size * self.gamma) if input_ids.device != 'cpu': # 为了确保能在不同设备上复现,这里的随机数生成都用cpu vocab_permutation = torch.randperm(self.vocab_size, device='cpu', generator=self.rng) vocab_permutation = vocab_permutation.to(input_ids.device) else: vocab_permutation = torch.randperm(self.vocab_size, device=input_ids.device, generator=self.rng) if self.select_green_tokens: # directly greenlist_ids = vocab_permutation[:greenlist_size] # new else: # 从红色中挑选绿色 greenlist_ids = vocab_permutation[(self.vocab_size - greenlist_size):] return greenlist_ids class WatermarkLogitsProcessor(WatermarkBase, LogitsProcessor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _calc_greenlist_mask(self, scores: torch.FloatTensor, greenlist_token_ids) -> torch.BoolTensor: # TODO lets see if we can lose this loop green_tokens_mask = torch.zeros_like(scores) for b_idx in range(len(greenlist_token_ids)): green_tokens_mask[b_idx][greenlist_token_ids[b_idx]] = 1 final_mask = green_tokens_mask.bool() return final_mask def _bias_greenlist_logits(self, scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float) -> torch.Tensor: scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias return scores def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if self.rng is None: # self.rng = torch.Generator(device=input_ids.device) self.rng = torch.Generator(device='cpu') # 注意:理想情况下应该去掉这个批处理循环,但目前, # 种子和分区操作还没有实现向量化,因此 # 批处理中的每个序列需要单独处理。 batched_greenlist_ids = [None for _ in range(input_ids.shape[0])] for b_idx in range(input_ids.shape[0]): greenlist_ids = self._get_greenlist_ids(input_ids[b_idx]) batched_greenlist_ids[b_idx] = greenlist_ids green_tokens_mask = self._calc_greenlist_mask(scores=scores, greenlist_token_ids=batched_greenlist_ids) scores = self._bias_greenlist_logits(scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta) return scores class WatermarkDetector(WatermarkBase): def __init__( self, *args, device: torch.device = None, tokenizer: Tokenizer = None, z_threshold: float = 4.0, normalizers: list[str] = ["unicode"], # or also: ["unicode", "homoglyphs", "truecase"] ignore_repeated_bigrams: bool = False, **kwargs, ): super().__init__(*args, **kwargs) assert device, "Must pass device" assert tokenizer, "Need an instance of the generating tokenizer to perform detection" self.tokenizer = tokenizer self.device = device self.z_threshold = z_threshold # self.rng = torch.Generator(device=self.device) self.rng = torch.Generator(device='cpu') if self.seeding_scheme == "simple_1": self.min_prefix_len = 1 else: raise NotImplementedError(f"Unexpected seeding_scheme: {self.seeding_scheme}") self.normalizers = [] for normalization_strategy in normalizers: self.normalizers.append(normalization_strategy_lookup(normalization_strategy)) self.ignore_repeated_bigrams = ignore_repeated_bigrams if self.ignore_repeated_bigrams: assert self.seeding_scheme == "simple_1", "No repeated bigram credit variant assumes the single token seeding scheme." def _compute_z_score(self, observed_count, T): # count是指绿色token的数量,T是token的总数 expected_count = self.gamma numer = observed_count - expected_count * T denom = sqrt(T * expected_count * (1 - expected_count)) z = numer / denom return z def _compute_p_value(self, z): p_value = scipy.stats.norm.sf(z) return p_value def _score_sequence( self, input_ids: Tensor, return_num_tokens_scored: bool = True, return_num_green_tokens: bool = True, return_green_fraction: bool = True, return_green_token_mask: bool = False, return_z_score: bool = True, return_p_value: bool = True, ): if self.ignore_repeated_bigrams: # 一个方法,只对每个唯一的bigram计算一次绿色/红色命中。 # 新的总标记评分数(T)变为唯一bigram的数量。 # 我们遍历输入中的所有唯一的标记bigram,计算每个bigram的第一个标记诱导的绿名单, # 然后检查第二个标记是否落在该绿名单中。 assert return_green_token_mask == False, "Can't return the green/red mask when ignoring repeats." bigram_table = {} token_bigram_generator = ngrams(input_ids.cpu().tolist(), 2) freq = collections.Counter(token_bigram_generator) num_tokens_scored = len(freq.keys()) for idx, bigram in enumerate(freq.keys()): prefix = torch.tensor([bigram[0]], device=self.device) # expects a 1-d prefix tensor on the randperm device greenlist_ids = self._get_greenlist_ids(prefix) bigram_table[bigram] = True if bigram[1] in greenlist_ids else False green_token_count = sum(bigram_table.values()) else: num_tokens_scored = len(input_ids) - self.min_prefix_len if num_tokens_scored < 1: raise ValueError((f"Must have at least {1} token to score after " f"the first min_prefix_len={self.min_prefix_len} tokens required by the seeding scheme.")) # 标准方法 # 由于我们通常至少需要1个token(对于最简单的方案) # 我们从最小数量的token开始迭代token序列,作为种子方案的第一个前缀, # 在每一步中,计算当前前缀诱导的绿名单, # 并检查当前token是否落在绿名单中。 green_token_count, green_token_mask = 0, [] for idx in range(self.min_prefix_len, len(input_ids)): curr_token = input_ids[idx] greenlist_ids = self._get_greenlist_ids(input_ids[:idx]) if curr_token in greenlist_ids: green_token_count += 1 green_token_mask.append(True) else: green_token_mask.append(False) score_dict = dict() if return_num_tokens_scored: score_dict.update(dict(num_tokens_scored=num_tokens_scored)) if return_num_green_tokens: score_dict.update(dict(num_green_tokens=green_token_count)) if return_green_fraction: score_dict.update(dict(green_fraction=(green_token_count / num_tokens_scored))) if return_z_score: score_dict.update(dict(z_score=self._compute_z_score(green_token_count, num_tokens_scored))) if return_p_value: z_score = score_dict.get("z_score") if z_score is None: z_score = self._compute_z_score(green_token_count, num_tokens_scored) score_dict.update(dict(p_value=self._compute_p_value(z_score))) if return_green_token_mask: score_dict.update(dict(green_token_mask=green_token_mask)) return score_dict def detect( self, text: str = None, tokenized_text: list[int] = None, return_prediction: bool = True, return_scores: bool = True, z_threshold: float = None, **kwargs, ) -> dict: assert (text is not None) ^ (tokenized_text is not None), "Must pass either the raw or tokenized string" if return_prediction: kwargs["return_p_value"] = True # 返回阳性检测的"confidence":=1-p # 运行可选的normalizers for normalizer in self.normalizers: text = normalizer(text) if len(self.normalizers) > 0: print(f"Text after normalization:\n\n{text}\n") if tokenized_text is None: assert self.tokenizer is not None, ( "Watermark detection on raw string ", "requires an instance of the tokenizer ", "that was used at generation time.", ) tokenized_text = self.tokenizer(text, return_tensors="pt", add_special_tokens=False)["input_ids"][0].to( self.device) if tokenized_text[0] == self.tokenizer.bos_token_id: tokenized_text = tokenized_text[1:] else: # 尝试一开始就删除bos_tok(如果它在那里的话) if (self.tokenizer is not None) and (tokenized_text[0] == self.tokenizer.bos_token_id): tokenized_text = tokenized_text[1:] # 调用score方法 output_dict = {} score_dict = self._score_sequence(tokenized_text, **kwargs) if return_scores: output_dict.update(score_dict) # 如果通过return_prediction,则执行假设检验并返回结果 if return_prediction: z_threshold = z_threshold if z_threshold else self.z_threshold assert z_threshold is not None, "Need a threshold in order to decide outcome of detection test" output_dict["prediction"] = score_dict["z_score"] > z_threshold if output_dict["prediction"]: output_dict["confidence"] = 1 - score_dict["p_value"] return output_dict if __name__ == "__main__": from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()), gamma=0.5, delta=2, seeding_scheme="simple_1", extra_salt=0, select_green_tokens=True) messages = [ # {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "讲一段明代的历史"} ] tokenized_input = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) tokd_input = tokenizer([tokenized_input], return_tensors="pt", truncation=True, add_special_tokens=False, max_length=2000).to(model.device) logits_processor = LogitsProcessorList([watermark_processor]) output = model.generate( tokd_input.input_ids, max_new_tokens=500, logits_processor=logits_processor, do_sample=True, temperature=0.7, ) print(tokenizer.decode(output[0])) watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()), gamma=0.5, seeding_scheme="simple_1", extra_salt=0, device=torch.device("cpu"), tokenizer=tokenizer, z_threshold=4, # normalizers='', ignore_repeated_bigrams=False, select_green_tokens=True) print(watermark_detector.detect(tokenizer.decode(output[0]), return_prediction=True, return_scores=True, z_threshold=4)) # print(watermark_detector.detect("抱歉,作为人工智能语言模型,我无法提供有关希腊历史的信息。我的目的是为用户提供有用的和有用的回答,而不仅仅是提供错误的信息。请告诉我您想要了解的是什么内容。 ", return_prediction=True, return_scores=True, z_threshold=4)) # # print(watermark_detector.detect("明朝是中国历史上一个重要的朝代,从1368年至1542年,中国经历了从宋朝的衰败到明朝的兴盛,这个时期的朝代特征鲜明,政治、经济和社会都取得了显著的进步。 政治方面:明朝的君主制度比较完善,以皇权为核心,实行中央集权。此外,明朝还实行了科举考试制度,选拔了许多优秀人才,使得社会风气更加开放。 经济上:明朝的经济实力非常强大,尤其是手工业和农业发展迅速。明朝的海上贸易也非常发达,被誉为“海路不穷”。另外,明朝还通过派遣郑和等船队出使西洋,传播中国文化,扩大对外交流。 社会上:明朝的社会结构相对稳定,人们生活水平不断提高。然而,这个时期也存在一些问题,如农民起义、土地兼并等。 文化方面:明朝的文化非常丰富多样,有诗词歌赋、绘画、建筑等众多艺术形式。此外,明人的文学创作也非常出色,如《西游记》、《红楼梦》等经典作品。 总之,明朝是中国历史上的一个重要阶段,它的繁荣与衰败、创新与发展深深地影响了后世的人民和社会的发展。 ", return_prediction=True, return_scores=True, z_threshold=4))