"""文本基础规范化器,用于减轻针对水印的简单攻击。 这个实现不太可能是所有可能的Unicode标准中的所有漏洞的完整列表, 它代表了我们在撰写时的最佳努力。 这些规范化器可以作为独立的规范化器使用。它们可以被制作成符合HF分词器标准的规范化器, 但这将需要涉及tokenizers.NormalizedString的有限Rust接口。 """ from collections import defaultdict from functools import cache import re import unicodedata import homoglyphs as hg def normalization_strategy_lookup(strategy_name: str) -> object: if strategy_name == "unicode": return UnicodeSanitizer() elif strategy_name == "homoglyphs": return HomoglyphCanonizer() elif strategy_name == "truecase": return TrueCaser() class HomoglyphCanonizer: """尝试检测同形字攻击并找到一致的标准形式。 这个函数是在ISO分类级别上进行的。也可以在语言级别上进行(参见注释掉的代码)。 """ def __init__(self): self.homoglyphs = None def __call__(self, homoglyphed_str: str) -> str: # find canon: target_category, all_categories = self._categorize_text(homoglyphed_str) homoglyph_table = self._select_canon_category_and_load(target_category, all_categories) return self._sanitize_text(target_category, homoglyph_table, homoglyphed_str) def _categorize_text(self, text: str) -> dict: iso_categories = defaultdict(int) # self.iso_languages = defaultdict(int) for char in text: iso_categories[hg.Categories.detect(char)] += 1 # for lang in hg.Languages.detect(char): # self.iso_languages[lang] += 1 target_category = max(iso_categories, key=iso_categories.get) all_categories = tuple(iso_categories) return target_category, all_categories @cache def _select_canon_category_and_load( self, target_category: str, all_categories: tuple[str] ) -> dict: homoglyph_table = hg.Homoglyphs( categories=(target_category, "COMMON") ) # 从文件中加载到此处的字母表 source_alphabet = hg.Categories.get_alphabet(all_categories) restricted_table = homoglyph_table.get_restricted_table( source_alphabet, homoglyph_table.alphabet ) # 从文件中加载到此处的表 return restricted_table def _sanitize_text( self, target_category: str, homoglyph_table: dict, homoglyphed_str: str ) -> str: sanitized_text = "" for char in homoglyphed_str: # langs = hg.Languages.detect(char) cat = hg.Categories.detect(char) if target_category in cat or "COMMON" in cat or len(cat) == 0: sanitized_text += char else: sanitized_text += list(homoglyph_table[char])[0] return sanitized_text class UnicodeSanitizer: def __init__(self, ruleset="whitespaces"): if ruleset == "whitespaces": """Documentation: \u00A0: Non-breaking space \u1680: Ogham space mark \u180E: Mongolian vowel separator \u2000-\u200B: Various space characters, including en space, em space, thin space, hair space, zero-width space, and zero-width non-joiner \u200C\u200D: Zero-width non-joiner and zero-width joiner \u200E,\u200F: Left-to-right-mark, Right-to-left-mark \u2060: Word joiner \u2063: Invisible separator \u202F: Narrow non-breaking space \u205F: Medium mathematical space \u3000: Ideographic space \uFEFF: Zero-width non-breaking space \uFFA0: Halfwidth hangul filler \uFFF9\uFFFA\uFFFB: Interlinear annotation characters \uFE00-\uFE0F: Variation selectors \u202A-\u202F: Embedding characters \u3164: Korean hangul filler. """ self.pattern = re.compile( r"[\u00A0\u1680\u180E\u2000-\u200B\u200C\u200D\u200E\u200F\u2060\u2063\u202F\u205F\u3000\uFEFF\uFFA0\uFFF9\uFFFA\uFFFB" r"\uFE00\uFE01\uFE02\uFE03\uFE04\uFE05\uFE06\uFE07\uFE08\uFE09\uFE0A\uFE0B\uFE0C\uFE0D\uFE0E\uFE0F\u3164\u202A\u202B\u202C\u202D" r"\u202E\u202F]" ) elif ruleset == "IDN.blacklist": """Documentation: [\u00A0\u1680\u180E\u2000-\u200B\u202F\u205F\u2060\u2063\uFEFF]: Matches any whitespace characters in the Unicode character set that are included in the IDN blacklist. \uFFF9-\uFFFB: Matches characters that are not defined in Unicode but are used as language tags in various legacy encodings. These characters are not allowed in domain names. \uD800-\uDB7F: Matches the first part of a surrogate pair. Surrogate pairs are used to represent characters in the Unicode character set that cannot be represented by a single 16-bit value. The first part of a surrogate pair is in the range U+D800 to U+DBFF, and the second part is in the range U+DC00 to U+DFFF. \uDB80-\uDBFF][\uDC00-\uDFFF]?: Matches the second part of a surrogate pair. The second part of a surrogate pair is in the range U+DC00 to U+DFFF, and is optional. [\uDB40\uDC20-\uDB40\uDC7F][\uDC00-\uDFFF]: Matches certain invalid UTF-16 sequences which should not appear in IDNs. """ self.pattern = re.compile( r"[\u00A0\u1680\u180E\u2000-\u200B\u202F\u205F\u2060\u2063\uFEFF\uFFF9-\uFFFB\uD800-\uDB7F\uDB80-\uDBFF]" r"[\uDC00-\uDFFF]?|[\uDB40\uDC20-\uDB40\uDC7F][\uDC00-\uDFFF]" ) else: """Documentation: This is a simple restriction to "no-unicode", using only ascii characters. Control characters are included. """ self.pattern = re.compile(r"[^\x00-\x7F]+") def __call__(self, text: str) -> str: text = unicodedata.normalize("NFC", text) # canon forms text = self.pattern.sub(" ", text) # pattern match text = re.sub(" +", " ", text) # collapse whitespaces text = "".join( c for c in text if unicodedata.category(c) != "Cc" ) # 删除所有剩余的不可打印字符 return text class TrueCaser: """真大小写还原,是一种将文本还原为其原始大小写形式的大小写规范化处理。 这可以防御那些像 spOngBoB 那样随机大小写的攻击。 这里使用了简单的词性标注器。 """ uppercase_pos = ["PROPN"] # 应使用大写字母命名POS def __init__(self, backend="spacy"): if backend == "spacy": import spacy self.nlp = spacy.load("en_core_web_sm") self.normalize_fn = self._spacy_truecasing else: from nltk import pos_tag, word_tokenize # noqa import nltk nltk.download("punkt") nltk.download("averaged_perceptron_tagger") nltk.download("universal_tagset") self.normalize_fn = self._nltk_truecasing def __call__(self, random_capitalized_string: str) -> str: truecased_str = self.normalize_fn(random_capitalized_string) return truecased_str def _spacy_truecasing(self, random_capitalized_string: str): doc = self.nlp(random_capitalized_string.lower()) POS = self.uppercase_pos truecased_str = "".join( [ w.text_with_ws.capitalize() if w.pos_ in POS or w.is_sent_start else w.text_with_ws for w in doc ] ) return truecased_str def _nltk_truecasing(self, random_capitalized_string: str): from nltk import pos_tag, word_tokenize import nltk nltk.download("punkt") nltk.download("averaged_perceptron_tagger") nltk.download("universal_tagset") POS = ["NNP", "NNPS"] tagged_text = pos_tag(word_tokenize(random_capitalized_string.lower())) truecased_str = " ".join([w.capitalize() if p in POS else w for (w, p) in tagged_text]) return truecased_str