# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import os from typing import Any, Callable, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalControlnetMixin from diffusers.utils import BaseOutput, logging from diffusers.models.attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, ) from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps from diffusers.models.modeling_utils import ModelMixin from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block from diffusers.models.unet_2d_condition import UNet2DConditionModel from diffusers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, MIN_PEFT_VERSION, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, _add_variant, _get_model_file, check_peft_version, deprecate, is_accelerate_available, is_torch_version, logging, ) from diffusers.utils.hub_utils import PushToHubMixin from SyncDreamer.ldm.modules.attention import default, zero_module, checkpoint from SyncDreamer.ldm.modules.diffusionmodules.openaimodel import UNetModel from SyncDreamer.ldm.modules.diffusionmodules.util import timestep_embedding from SyncDreamer.ldm.models.diffusion.sync_dreamer_attention import DepthWiseAttention logger = logging.get_logger(__name__) # pylint: disable=invalid-name class DepthAttention(nn.Module): def __init__(self, query_dim, context_dim, heads, dim_head, output_bias=True): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.dim_head = dim_head self.to_q = nn.Conv2d(query_dim, inner_dim, 1, 1, bias=False) self.to_k = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False) self.to_v = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False) if output_bias: self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1) else: self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1, bias=False) def forward(self, x, context): """ @param x: b,f0,h,w @param context: b,f1,d,h,w @return: """ hn, hd = self.heads, self.dim_head b, _, h, w = x.shape b, _, d, h, w = context.shape q = self.to_q(x).reshape(b,hn,hd,h,w) # b,t,h,w k = self.to_k(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w v = self.to_v(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w sim = torch.sum(q.unsqueeze(3) * k, 2) * self.scale # b,hn,d,h,w attn = sim.softmax(dim=2) # b,hn,hd,d,h,w * b,hn,1,d,h,w out = torch.sum(v * attn.unsqueeze(2), 3) # b,hn,hd,h,w out = out.reshape(b,hn*hd,h,w) return self.to_out(out) class DepthTransformer(nn.Module): def __init__(self, dim, n_heads, d_head, context_dim=None, checkpoint=False): super().__init__() inner_dim = n_heads * d_head self.proj_in = nn.Sequential( nn.Conv2d(dim, inner_dim, 1, 1), nn.GroupNorm(8, inner_dim), nn.SiLU(True), ) self.proj_context = nn.Sequential( nn.Conv3d(context_dim, context_dim, 1, 1, bias=False), # no bias nn.GroupNorm(8, context_dim), nn.ReLU(True), # only relu, because we want input is 0, output is 0 ) self.depth_attn = DepthAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, context_dim=context_dim, output_bias=False) # is a self-attention if not self.disable_self_attn self.proj_out = nn.Sequential( nn.GroupNorm(8, inner_dim), nn.ReLU(True), nn.Conv2d(inner_dim, inner_dim, 3, 1, 1, bias=False), nn.GroupNorm(8, inner_dim), nn.ReLU(True), zero_module(nn.Conv2d(inner_dim, dim, 3, 1, 1, bias=False)), ) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context): x_in = x x = self.proj_in(x) context = self.proj_context(context) x = self.depth_attn(x, context) x = self.proj_out(x) + x_in return x @dataclass class ControlNetOutputSync(BaseOutput): """ The output of [`ControlNetModelSync`]. Args: down_block_res_samples (`tuple[torch.Tensor]`): A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be used to condition the original UNet's downsampling activations. mid_down_block_re_sample (`torch.Tensor`): The activation of the midde block (the lowest sample resolution). Each tensor should be of shape `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. Output can be used to condition the original UNet's middle block activation. """ down_block_res_samples: Tuple[torch.Tensor] mid_block_res_sample: torch.Tensor class ControlNetConditioningEmbeddingSync(nn.Module): """ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full model) to encode image-space conditions ... into feature maps ..." """ def __init__( self, conditioning_embedding_channels: int, conditioning_channels: int = 3, block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), ): super().__init__() self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) self.blocks = nn.ModuleList([]) for i in range(len(block_out_channels) - 1): channel_in = block_out_channels[i] channel_out = block_out_channels[i + 1] self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) self.conv_out = zero_module( nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) ) def forward(self, conditioning): embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding class ControlNetModelSync(UNetModel, ModelMixin, ConfigMixin): use_fp16 = False dtype = torch.float16 if use_fp16 else torch.float32 @register_to_config def __init__( self, volume_dims=[64, 128, 256, 512], image_size=32, in_channels=8, model_channels=320, out_channels=4, num_res_blocks=2, attention_resolutions=[4, 2, 1], channel_mult=[1, 2, 4, 4], use_checkpoint=False, legacy=False, num_heads=8, use_spatial_transformer=True, transformer_depth=1, context_dim=768, ): super().__init__(image_size=image_size, in_channels=in_channels, model_channels=model_channels, out_channels=out_channels, num_res_blocks=num_res_blocks, attention_resolutions=attention_resolutions, channel_mult=channel_mult, use_checkpoint=use_checkpoint, legacy=legacy, num_heads=num_heads, use_spatial_transformer=use_spatial_transformer, transformer_depth=transformer_depth, context_dim=context_dim) block_out_channels = (320, 640, 1280, 1280) conditioning_embedding_out_channels = (16, 32, 96, 256) conditioning_channels = 3 down_block_types = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) layers_per_block = 2 # input conv_in_kernel = 3 conv_in_padding = (conv_in_kernel - 1) // 2 d0,d1,d2,d3 = volume_dims # 4 ch = model_channels*channel_mult[2] self.middle_conditions = DepthTransformer(ch, 4, d3 // 2, context_dim=d3) self.controlnet_cond_embedding = ControlNetConditioningEmbeddingSync( conditioning_embedding_channels=self.in_channels, block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels, ) self.controlnet_down_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) controlnet_block = zero_module(controlnet_block) self.controlnet_down_blocks.append(controlnet_block) for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 for _ in range(layers_per_block): controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) controlnet_block = zero_module(controlnet_block) self.controlnet_down_blocks.append(controlnet_block) if not is_final_block: controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) controlnet_block = zero_module(controlnet_block) self.controlnet_down_blocks.append(controlnet_block) # mid mid_block_channel = block_out_channels[-1] controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) controlnet_block = zero_module(controlnet_block) self.controlnet_mid_block = controlnet_block @classmethod def from_unet( cls, unet: DepthWiseAttention, load_weights_from_unet: bool = True, ): r""" Instantiate a [`ControlNetModelSync`] from [`DepthWiseAttention`]. Parameters: unet (`DepthWiseAttention`): The UNet model weights to copy to the [`ControlNetModelSync`]. All configuration options are also copied where applicable. """ controlnet = cls( image_size=32, in_channels=8, model_channels=320, out_channels=4, num_res_blocks=2, attention_resolutions=[ 4, 2, 1 ], num_heads=8, volume_dims=[64, 128, 256, 512], channel_mult=[ 1, 2, 4, 4 ], use_spatial_transformer=True, transformer_depth=1, context_dim=768, use_checkpoint=False, legacy=False, ) if load_weights_from_unet: controlnet.time_embed.load_state_dict(unet.time_embed.state_dict()) controlnet.input_blocks.load_state_dict(unet.input_blocks.state_dict()) controlnet.middle_block.load_state_dict(unet.middle_block.state_dict()) controlnet.middle_conditions.load_state_dict(unet.middle_conditions.state_dict()) return controlnet def forward(self, x, timesteps=None, controlnet_cond=None, conditioning_scale=1.0, context=None, return_dict = True, source_dict=None, **kwargs): # 1-4. Down and mid blocks, incluidng time embedding if len(timesteps.shape) == 0: timesteps = timesteps[None].to(x.device) hs = [] t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) x = x + controlnet_cond h = x.type(self.dtype) for index, module in enumerate(self.input_blocks): h = module(h, emb, context) hs.append(h) h = self.middle_block(h, emb, context) h = self.middle_conditions(h, context=source_dict[h.shape[-1]]) # 5. Control net blocks controlnet_down_block_res_samples = () assert len(hs) == len(self.controlnet_down_blocks), "Number of layers in 'hs' should be equal to 'controlnet_down_blocks'" for down_block_res_sample, controlnet_block in zip(hs, self.controlnet_down_blocks): down_block_res_sample = controlnet_block(down_block_res_sample) controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) down_block_res_samples = controlnet_down_block_res_samples mid_block_res_sample = self.controlnet_mid_block(h) if not return_dict: return (down_block_res_samples, mid_block_res_sample) return ControlNetOutputSync( down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample ) def zero_module(module): for p in module.parameters(): nn.init.zeros_(p) return module