""" Common miscellaneous functions. AI Music Technology Group, Sony Group Corporation AI Speech and Sound Group, Sony Europe This implementation originally belongs to Sony Group Corporation, which has been introduced in the work "Automatic music mixing with deep learning and out-of-domain data". Original repo link: https://github.com/sony/FxNorm-automix """ import os import psutil import sys import numpy as np import librosa import torch import math def uprint(s): """ Unbuffered print to stdout. We also flush stderr to have the log-file in sync. Args: s: string to print """ print(s) sys.stdout.flush() sys.stderr.flush() def recursive_getattr(obj, attr): """ Run `getattr` recursively (e.g., for `fc1.weight`). Args: obj: object attr: attribute to get Returns: object """ for a in attr.split('.'): obj = getattr(obj, a) return obj def compute_stft(samples, hop_length, fft_size, stft_window): """ Compute the STFT of `samples` applying a Hann window of size `FFT_SIZE`, shifted for each frame by `hop_length`. Args: samples: num samples x channels hop_length: window shift in samples fft_size: FFT size which is also the window size stft_window: STFT analysis window Returns: stft: frames x channels x freqbins """ n_channels = samples.shape[1] n_frames = 1+int((samples.shape[0] - fft_size)/hop_length) stft = np.empty((n_frames, n_channels, fft_size//2+1), dtype=np.complex64) # convert into f_contiguous (such that [:,n] slicing is c_contiguous) samples = np.asfortranarray(samples) for n in range(n_channels): # compute STFT (output has size `n_frames x N_BINS`) stft[:, n, :] = librosa.stft(samples[:, n], n_fft=fft_size, hop_length=hop_length, window=stft_window, center=False).transpose() return stft def compute_istft(stft, hop_length, stft_window): """ Compute the inverse STFT of `stft`. Args: stft: frames x channels x freqbins hop_length: window shift in samples stft_window: STFT synthesis window Returns: samples: num samples x channels """ for n in range(stft.shape[1]): s = librosa.istft(stft[:, n, :].transpose(), hop_length=hop_length, window=stft_window, center=False) if n == 0: samples = s else: samples = np.column_stack((samples, s)) # ensure that we have a 2d array (monaural files are just loaded as vectors) if samples.ndim == 1: samples = samples[:, np.newaxis] return samples def get_size(obj): """ Recursively find size of objects (in bytes). Args: obj: object Returns: size of object """ size = sys.getsizeof(obj) import functools if isinstance(obj, dict): size += sum([get_size(v) for v in obj.values()]) size += sum([get_size(k) for k in obj.keys()]) elif isinstance(obj, functools.partial): size += sum([get_size(v) for v in obj.keywords.values()]) size += sum([get_size(k) for k in obj.keywords.keys()]) elif isinstance(obj, list): size += sum([get_size(i) for i in obj]) elif isinstance(obj, tuple): size += sum([get_size(i) for i in obj]) return size def get_process_memory(): """ Return memory consumption in GBytes. Returns: memory used by the process """ return psutil.Process(os.getpid()).memory_info()[0] / (2 ** 30) def check_complete_convolution(input_size, kernel_size, stride=1, padding=0, dilation=1, note=''): """ Check where the convolution is complete. Returns true if no time steps left over in a Conv1d Args: input_size: size of input kernel_size: size of kernel stride: stride padding: padding dilation: dilation note: string for additional notes """ is_complete = ((input_size + 2*padding - dilation * (kernel_size - 1) - 1) / stride + 1).is_integer() uprint(f'{note} {is_complete}') def pad_to_shape(x: torch.Tensor, y: int) -> torch.Tensor: """ Right-pad or right-trim first argument last dimension to have same size as second argument. Args: x: Tensor to be padded. y: Size to pad/trim x last dimension to Returns: `x` padded to match `y`'s dimension. """ inp_len = y output_len = x.shape[-1] return torch.nn.functional.pad(x, [0, inp_len - output_len]) def valid_length(input_size, kernel_size, stride=1, padding=0, dilation=1): """ Return the nearest valid upper length to use with the model so that there is no time steps left over in a 1DConv. For all layers, size of the (input - kernel_size) % stride = 0. Here valid means that there is no left over frame neglected and discarded. Args: input_size: size of input kernel_size: size of kernel stride: stride padding: padding dilation: dilation Returns: valid length for convolution """ length = math.ceil((input_size + 2*padding - dilation * (kernel_size - 1) - 1)/stride) + 1 length = (length - 1) * stride - 2*padding + dilation * (kernel_size - 1) + 1 return int(length) def td_length_from_fd(fd_length: int, fft_size: int, fft_hop: int) -> int: """ Return the length in time domain, given the length in frequency domain. Return the necessary length in the time domain of a signal to be transformed into a signal of length `fd_length` in time-frequency domain with the given STFT parameters `fft_size` and `fft_hop`. No padding is assumed. Args: fd_length: length in frequency domain fft_size: size of FFT fft_hop: hop length Returns: length in time domain """ return (fd_length - 1) * fft_hop + fft_size