from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline
import torch
import streamlit as st
MODELS={
'uribe':{
'tokenizer':AutoTokenizer.from_pretrained("jhonparra18/uribe-twitter-assistant-30ep"),
'model':AutoModelForCausalLM.from_pretrained("jhonparra18/uribe-twitter-assistant-30ep")},
'petro':{
'tokenizer':AutoTokenizer.from_pretrained("jhonparra18/petro-twitter-assistant-30ep-large"),
'model':AutoModelForCausalLM.from_pretrained("jhonparra18/petro-twitter-assistant-30ep-large")}}
def callback_input_text(new_text):
del st.session_state.input_user_txt
st.session_state.input_user_txt=new_text
def text_completion(tokenizer,model,input_text:str,max_len:int=100):
tokenizer.padding_side="left" ##start padding from left to right
tokenizer.pad_token = tokenizer.eos_token
input_ids = tokenizer([input_text], return_tensors="pt",truncation=True,max_length=128)
with torch.no_grad(): ##maybe useless as the generate method does not compute gradients, just in case
outputs = model.generate(**input_ids, do_sample=True, max_length=max_len,top_k=100,top_p=0.95)
out_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return out_text
st.markdown("
🐦 Tweet de Político Colombiano: Autocompletado/generación de texto a partir de GPT2
", unsafe_allow_html=True)
st.text("")
st.markdown("Causal Language Modeling, source code here
", unsafe_allow_html=True)
st.text("")
col1,col2 = st.columns(2)
with col1:
with st.form("input_values"):
politician = st.selectbox(
"Selecciona el político",
("Uribe", "Petro")
)
st.text("")
max_length_text=st.slider('Num Max Tokens', 50, 200, 100,10,key="user_max_length")
st.text("")
input_user_text=st.empty()
input_text_value=input_user_text.text_area('Input Text', 'Mi gobierno no es corrupto',key="input_user_txt",height=300)
st.text("")
complete_input=st.checkbox("Complete Input [Experimental]",value=False,help="Automáticamente rellenar el texto inicial con el resultado para una nueva iteración")
go_button=st.form_submit_button('Generate')
with col2:
if go_button: ##avoid re running script
with st.spinner('Generating Text...'):
output_text=text_completion(MODELS[politician.lower()]['tokenizer'],MODELS[politician.lower()]['model'],input_text_value,max_length_text)
st.text_area("Tweet:",output_text,height=500,key="output_text")
if complete_input:
callback_input_text(output_text)
input_user_text.text_area("Input Text", output_text,height=300)