Spaces:
Running
Running
File size: 47,893 Bytes
f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 f5ba9ea 62faa17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from collections import OrderedDict
import torch
from tqdm import tqdm
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
class SAM2VideoPredictor(SAM2Base):
"""The predictor class to handle user interactions and manage inference states."""
def __init__(
self,
fill_hole_area=0,
# whether to apply non-overlapping constraints on the output object masks
non_overlap_masks=False,
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
clear_non_cond_mem_around_input=False,
# whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
clear_non_cond_mem_for_multi_obj=False,
**kwargs,
):
super().__init__(**kwargs)
self.fill_hole_area = fill_hole_area
self.non_overlap_masks = non_overlap_masks
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
@torch.inference_mode()
def init_state(
self,
video_path,
offload_video_to_cpu=False,
offload_state_to_cpu=False,
async_loading_frames=False,
):
"""Initialize a inference state."""
compute_device = self.device # device of the model
images, video_height, video_width = load_video_frames(
video_path=video_path,
image_size=self.image_size,
offload_video_to_cpu=offload_video_to_cpu,
async_loading_frames=async_loading_frames,
compute_device=compute_device,
)
inference_state = {}
inference_state["images"] = images
inference_state["num_frames"] = len(images)
# whether to offload the video frames to CPU memory
# turning on this option saves the GPU memory with only a very small overhead
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
# whether to offload the inference state to CPU memory
# turning on this option saves the GPU memory at the cost of a lower tracking fps
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
# and from 24 to 21 when tracking two objects)
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
# the original video height and width, used for resizing final output scores
inference_state["video_height"] = video_height
inference_state["video_width"] = video_width
inference_state["device"] = compute_device
if offload_state_to_cpu:
inference_state["storage_device"] = torch.device("cpu")
else:
inference_state["storage_device"] = compute_device
# inputs on each frame
inference_state["point_inputs_per_obj"] = {}
inference_state["mask_inputs_per_obj"] = {}
# visual features on a small number of recently visited frames for quick interactions
inference_state["cached_features"] = {}
# values that don't change across frames (so we only need to hold one copy of them)
inference_state["constants"] = {}
# mapping between client-side object id and model-side object index
inference_state["obj_id_to_idx"] = OrderedDict()
inference_state["obj_idx_to_id"] = OrderedDict()
inference_state["obj_ids"] = []
# A storage to hold the model's tracking results and states on each frame
inference_state["output_dict"] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
inference_state["output_dict_per_obj"] = {}
# A temporary storage to hold new outputs when user interact with a frame
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
inference_state["temp_output_dict_per_obj"] = {}
# Frames that already holds consolidated outputs from click or mask inputs
# (we directly use their consolidated outputs during tracking)
inference_state["consolidated_frame_inds"] = {
"cond_frame_outputs": set(), # set containing frame indices
"non_cond_frame_outputs": set(), # set containing frame indices
}
# metadata for each tracking frame (e.g. which direction it's tracked)
inference_state["tracking_has_started"] = False
inference_state["frames_already_tracked"] = {}
# Warm up the visual backbone and cache the image feature on frame 0
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
return inference_state
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
"""
Load a pretrained model from the Hugging Face hub.
Arguments:
model_id (str): The Hugging Face repository ID.
**kwargs: Additional arguments to pass to the model constructor.
Returns:
(SAM2VideoPredictor): The loaded model.
"""
from sam2.build_sam import build_sam2_video_predictor_hf
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
return sam_model
def _obj_id_to_idx(self, inference_state, obj_id):
"""Map client-side object id to model-side object index."""
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
if obj_idx is not None:
return obj_idx
# This is a new object id not sent to the server before. We only allow adding
# new objects *before* the tracking starts.
allow_new_object = not inference_state["tracking_has_started"]
if allow_new_object:
# get the next object slot
obj_idx = len(inference_state["obj_id_to_idx"])
inference_state["obj_id_to_idx"][obj_id] = obj_idx
inference_state["obj_idx_to_id"][obj_idx] = obj_id
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
# set up input and output structures for this object
inference_state["point_inputs_per_obj"][obj_idx] = {}
inference_state["mask_inputs_per_obj"][obj_idx] = {}
inference_state["output_dict_per_obj"][obj_idx] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
inference_state["temp_output_dict_per_obj"][obj_idx] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
return obj_idx
else:
raise RuntimeError(
f"Cannot add new object id {obj_id} after tracking starts. "
f"All existing object ids: {inference_state['obj_ids']}. "
f"Please call 'reset_state' to restart from scratch."
)
def _obj_idx_to_id(self, inference_state, obj_idx):
"""Map model-side object index to client-side object id."""
return inference_state["obj_idx_to_id"][obj_idx]
def _get_obj_num(self, inference_state):
"""Get the total number of unique object ids received so far in this session."""
return len(inference_state["obj_idx_to_id"])
@torch.inference_mode()
def add_new_points_or_box(
self,
inference_state,
frame_idx,
obj_id,
points=None,
labels=None,
clear_old_points=True,
normalize_coords=True,
box=None,
):
"""Add new points to a frame."""
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
if (points is not None) != (labels is not None):
raise ValueError("points and labels must be provided together")
if points is None and box is None:
raise ValueError("at least one of points or box must be provided as input")
if points is None:
points = torch.zeros(0, 2, dtype=torch.float32)
elif not isinstance(points, torch.Tensor):
points = torch.tensor(points, dtype=torch.float32)
if labels is None:
labels = torch.zeros(0, dtype=torch.int32)
elif not isinstance(labels, torch.Tensor):
labels = torch.tensor(labels, dtype=torch.int32)
if points.dim() == 2:
points = points.unsqueeze(0) # add batch dimension
if labels.dim() == 1:
labels = labels.unsqueeze(0) # add batch dimension
# If `box` is provided, we add it as the first two points with labels 2 and 3
# along with the user-provided points (consistent with how SAM 2 is trained).
if box is not None:
if not clear_old_points:
raise ValueError(
"cannot add box without clearing old points, since "
"box prompt must be provided before any point prompt "
"(please use clear_old_points=True instead)"
)
if inference_state["tracking_has_started"]:
warnings.warn(
"You are adding a box after tracking starts. SAM 2 may not always be "
"able to incorporate a box prompt for *refinement*. If you intend to "
"use box prompt as an *initial* input before tracking, please call "
"'reset_state' on the inference state to restart from scratch.",
category=UserWarning,
stacklevel=2,
)
if not isinstance(box, torch.Tensor):
box = torch.tensor(box, dtype=torch.float32, device=points.device)
box_coords = box.reshape(1, 2, 2)
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
box_labels = box_labels.reshape(1, 2)
points = torch.cat([box_coords, points], dim=1)
labels = torch.cat([box_labels, labels], dim=1)
if normalize_coords:
video_H = inference_state["video_height"]
video_W = inference_state["video_width"]
points = points / torch.tensor([video_W, video_H]).to(points.device)
# scale the (normalized) coordinates by the model's internal image size
points = points * self.image_size
points = points.to(inference_state["device"])
labels = labels.to(inference_state["device"])
if not clear_old_points:
point_inputs = point_inputs_per_frame.get(frame_idx, None)
else:
point_inputs = None
point_inputs = concat_points(point_inputs, points, labels)
point_inputs_per_frame[frame_idx] = point_inputs
mask_inputs_per_frame.pop(frame_idx, None)
# If this frame hasn't been tracked before, we treat it as an initial conditioning
# frame, meaning that the inputs points are to generate segments on this frame without
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
# the input points will be used to correct the already tracked masks.
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
# whether to track in reverse time order
if is_init_cond_frame:
reverse = False
else:
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
# Add a frame to conditioning output if it's an initial conditioning frame or
# if the model sees all frames receiving clicks/mask as conditioning frames.
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Get any previously predicted mask logits on this object and feed it along with
# the new clicks into the SAM mask decoder.
prev_sam_mask_logits = None
# lookup temporary output dict first, which contains the most recent output
# (if not found, then lookup conditioning and non-conditioning frame output)
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
if prev_out is None:
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
if prev_out is None:
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
if prev_out is not None and prev_out["pred_masks"] is not None:
device = inference_state["device"]
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
current_out, _ = self._run_single_frame_inference(
inference_state=inference_state,
output_dict=obj_output_dict, # run on the slice of a single object
frame_idx=frame_idx,
batch_size=1, # run on the slice of a single object
is_init_cond_frame=is_init_cond_frame,
point_inputs=point_inputs,
mask_inputs=None,
reverse=reverse,
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
# allows us to enforce non-overlapping constraints on all objects before encoding
# them into memory.
run_mem_encoder=False,
prev_sam_mask_logits=prev_sam_mask_logits,
)
# Add the output to the output dict (to be used as future memory)
obj_temp_output_dict[storage_key][frame_idx] = current_out
# Resize the output mask to the original video resolution
obj_ids = inference_state["obj_ids"]
consolidated_out = self._consolidate_temp_output_across_obj(
inference_state,
frame_idx,
is_cond=is_cond,
run_mem_encoder=False,
consolidate_at_video_res=True,
)
_, video_res_masks = self._get_orig_video_res_output(
inference_state, consolidated_out["pred_masks_video_res"]
)
return frame_idx, obj_ids, video_res_masks
def add_new_points(self, *args, **kwargs):
"""Deprecated method. Please use `add_new_points_or_box` instead."""
return self.add_new_points_or_box(*args, **kwargs)
@torch.inference_mode()
def add_new_mask(
self,
inference_state,
frame_idx,
obj_id,
mask,
):
"""Add new mask to a frame."""
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
if not isinstance(mask, torch.Tensor):
mask = torch.tensor(mask, dtype=torch.bool)
assert mask.dim() == 2
mask_H, mask_W = mask.shape
mask_inputs_orig = mask[None, None] # add batch and channel dimension
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
# resize the mask if it doesn't match the model's image size
if mask_H != self.image_size or mask_W != self.image_size:
mask_inputs = torch.nn.functional.interpolate(
mask_inputs_orig,
size=(self.image_size, self.image_size),
align_corners=False,
mode="bilinear",
antialias=True, # use antialias for downsampling
)
mask_inputs = (mask_inputs >= 0.5).float()
else:
mask_inputs = mask_inputs_orig
mask_inputs_per_frame[frame_idx] = mask_inputs
point_inputs_per_frame.pop(frame_idx, None)
# If this frame hasn't been tracked before, we treat it as an initial conditioning
# frame, meaning that the inputs points are to generate segments on this frame without
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
# the input points will be used to correct the already tracked masks.
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
# whether to track in reverse time order
if is_init_cond_frame:
reverse = False
else:
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
# Add a frame to conditioning output if it's an initial conditioning frame or
# if the model sees all frames receiving clicks/mask as conditioning frames.
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
current_out, _ = self._run_single_frame_inference(
inference_state=inference_state,
output_dict=obj_output_dict, # run on the slice of a single object
frame_idx=frame_idx,
batch_size=1, # run on the slice of a single object
is_init_cond_frame=is_init_cond_frame,
point_inputs=None,
mask_inputs=mask_inputs,
reverse=reverse,
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
# allows us to enforce non-overlapping constraints on all objects before encoding
# them into memory.
run_mem_encoder=False,
)
# Add the output to the output dict (to be used as future memory)
obj_temp_output_dict[storage_key][frame_idx] = current_out
# Resize the output mask to the original video resolution
obj_ids = inference_state["obj_ids"]
consolidated_out = self._consolidate_temp_output_across_obj(
inference_state,
frame_idx,
is_cond=is_cond,
run_mem_encoder=False,
consolidate_at_video_res=True,
)
_, video_res_masks = self._get_orig_video_res_output(
inference_state, consolidated_out["pred_masks_video_res"]
)
return frame_idx, obj_ids, video_res_masks
def _get_orig_video_res_output(self, inference_state, any_res_masks):
"""
Resize the object scores to the original video resolution (video_res_masks)
and apply non-overlapping constraints for final output.
"""
device = inference_state["device"]
video_H = inference_state["video_height"]
video_W = inference_state["video_width"]
any_res_masks = any_res_masks.to(device, non_blocking=True)
if any_res_masks.shape[-2:] == (video_H, video_W):
video_res_masks = any_res_masks
else:
video_res_masks = torch.nn.functional.interpolate(
any_res_masks,
size=(video_H, video_W),
mode="bilinear",
align_corners=False,
)
if self.non_overlap_masks:
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
return any_res_masks, video_res_masks
def _consolidate_temp_output_across_obj(
self,
inference_state,
frame_idx,
is_cond,
run_mem_encoder,
consolidate_at_video_res=False,
):
"""
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
a frame into a single output for all objects, including
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
`output_dict_per_obj` for this frame) or leave them as placeholder values
(if they don't exist in `output_dict_per_obj` for this frame);
2) if specified, rerun memory encoder after apply non-overlapping constraints
on the object scores.
"""
batch_size = self._get_obj_num(inference_state)
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Optionally, we allow consolidating the temporary outputs at the original
# video resolution (to provide a better editing experience for mask prompts).
if consolidate_at_video_res:
assert not run_mem_encoder, "memory encoder cannot run at video resolution"
consolidated_H = inference_state["video_height"]
consolidated_W = inference_state["video_width"]
consolidated_mask_key = "pred_masks_video_res"
else:
consolidated_H = consolidated_W = self.image_size // 4
consolidated_mask_key = "pred_masks"
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
# will be added when rerunning the memory encoder after applying non-overlapping
# constraints to object scores. Its "pred_masks" are prefilled with a large
# negative value (NO_OBJ_SCORE) to represent missing objects.
consolidated_out = {
"maskmem_features": None,
"maskmem_pos_enc": None,
consolidated_mask_key: torch.full(
size=(batch_size, 1, consolidated_H, consolidated_W),
fill_value=NO_OBJ_SCORE,
dtype=torch.float32,
device=inference_state["storage_device"],
),
"obj_ptr": torch.full(
size=(batch_size, self.hidden_dim),
fill_value=NO_OBJ_SCORE,
dtype=torch.float32,
device=inference_state["device"],
),
}
empty_mask_ptr = None
for obj_idx in range(batch_size):
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
# we fall back and look up its previous output in "output_dict_per_obj".
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
# "output_dict_per_obj" to find a previous output for this object.
if out is None:
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
if out is None:
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
# placeholder above) and set its object pointer to be a dummy pointer.
if out is None:
# Fill in dummy object pointers for those objects without any inputs or
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
# i.e. when we need to build the memory for tracking).
if run_mem_encoder:
if empty_mask_ptr is None:
empty_mask_ptr = self._get_empty_mask_ptr(
inference_state, frame_idx
)
# fill object pointer with a dummy pointer (based on an empty mask)
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
continue
# Add the temporary object output mask to consolidated output mask
obj_mask = out["pred_masks"]
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
else:
# Resize first if temporary object mask has a different resolution
resized_obj_mask = torch.nn.functional.interpolate(
obj_mask,
size=consolidated_pred_masks.shape[-2:],
mode="bilinear",
align_corners=False,
)
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
# Optionally, apply non-overlapping constraints on the consolidated scores
# and rerun the memory encoder
if run_mem_encoder:
device = inference_state["device"]
high_res_masks = torch.nn.functional.interpolate(
consolidated_out["pred_masks"].to(device, non_blocking=True),
size=(self.image_size, self.image_size),
mode="bilinear",
align_corners=False,
)
if self.non_overlap_masks_for_mem_enc:
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
inference_state=inference_state,
frame_idx=frame_idx,
batch_size=batch_size,
high_res_masks=high_res_masks,
is_mask_from_pts=True, # these frames are what the user interacted with
)
consolidated_out["maskmem_features"] = maskmem_features
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
return consolidated_out
def _get_empty_mask_ptr(self, inference_state, frame_idx):
"""Get a dummy object pointer based on an empty mask on the current frame."""
# A dummy (empty) mask with a single object
batch_size = 1
mask_inputs = torch.zeros(
(batch_size, 1, self.image_size, self.image_size),
dtype=torch.float32,
device=inference_state["device"],
)
# Retrieve correct image features
(
_,
_,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
) = self._get_image_feature(inference_state, frame_idx, batch_size)
# Feed the empty mask and image feature above to get a dummy object pointer
current_out = self.track_step(
frame_idx=frame_idx,
is_init_cond_frame=True,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=None,
mask_inputs=mask_inputs,
output_dict={},
num_frames=inference_state["num_frames"],
track_in_reverse=False,
run_mem_encoder=False,
prev_sam_mask_logits=None,
)
return current_out["obj_ptr"]
@torch.inference_mode()
def propagate_in_video_preflight(self, inference_state):
"""Prepare inference_state and consolidate temporary outputs before tracking."""
# Tracking has started and we don't allow adding new objects until session is reset.
inference_state["tracking_has_started"] = True
batch_size = self._get_obj_num(inference_state)
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
# add them into "output_dict".
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
output_dict = inference_state["output_dict"]
# "consolidated_frame_inds" contains indices of those frames where consolidated
# temporary outputs have been added (either in this call or any previous calls
# to `propagate_in_video_preflight`).
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
for is_cond in [False, True]:
# Separately consolidate conditioning and non-conditioning temp outptus
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Find all the frames that contain temporary outputs for any objects
# (these should be the frames that have just received clicks for mask inputs
# via `add_new_points_or_box` or `add_new_mask`)
temp_frame_inds = set()
for obj_temp_output_dict in temp_output_dict_per_obj.values():
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
consolidated_frame_inds[storage_key].update(temp_frame_inds)
# consolidate the temprary output across all objects on this frame
for frame_idx in temp_frame_inds:
consolidated_out = self._consolidate_temp_output_across_obj(
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
)
# merge them into "output_dict" and also create per-object slices
output_dict[storage_key][frame_idx] = consolidated_out
self._add_output_per_object(
inference_state, frame_idx, consolidated_out, storage_key
)
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
)
if clear_non_cond_mem:
# clear non-conditioning memory of the surrounding frames
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
# clear temporary outputs in `temp_output_dict_per_obj`
for obj_temp_output_dict in temp_output_dict_per_obj.values():
obj_temp_output_dict[storage_key].clear()
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
# output on the same frame in "non_cond_frame_outputs"
for frame_idx in output_dict["cond_frame_outputs"]:
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
for obj_output_dict in inference_state["output_dict_per_obj"].values():
for frame_idx in obj_output_dict["cond_frame_outputs"]:
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
assert frame_idx in output_dict["cond_frame_outputs"]
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
# with either points or mask inputs (which should be true under a correct workflow).
all_consolidated_frame_inds = (
consolidated_frame_inds["cond_frame_outputs"]
| consolidated_frame_inds["non_cond_frame_outputs"]
)
input_frames_inds = set()
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
input_frames_inds.update(point_inputs_per_frame.keys())
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
input_frames_inds.update(mask_inputs_per_frame.keys())
assert all_consolidated_frame_inds == input_frames_inds
@torch.inference_mode()
def propagate_in_video(
self,
inference_state,
start_frame_idx=None,
max_frame_num_to_track=None,
reverse=False,
):
"""Propagate the input points across frames to track in the entire video."""
self.propagate_in_video_preflight(inference_state)
output_dict = inference_state["output_dict"]
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
obj_ids = inference_state["obj_ids"]
num_frames = inference_state["num_frames"]
batch_size = self._get_obj_num(inference_state)
if len(output_dict["cond_frame_outputs"]) == 0:
raise RuntimeError("No points are provided; please add points first")
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
)
# set start index, end index, and processing order
if start_frame_idx is None:
# default: start from the earliest frame with input points
start_frame_idx = min(output_dict["cond_frame_outputs"])
if max_frame_num_to_track is None:
# default: track all the frames in the video
max_frame_num_to_track = num_frames
if reverse:
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
if start_frame_idx > 0:
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
else:
processing_order = [] # skip reverse tracking if starting from frame 0
else:
end_frame_idx = min(
start_frame_idx + max_frame_num_to_track, num_frames - 1
)
processing_order = range(start_frame_idx, end_frame_idx + 1)
for frame_idx in tqdm(processing_order, desc="propagate in video"):
# We skip those frames already in consolidated outputs (these are frames
# that received input clicks or mask). Note that we cannot directly run
# batched forward on them via `_run_single_frame_inference` because the
# number of clicks on each object might be different.
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
storage_key = "cond_frame_outputs"
current_out = output_dict[storage_key][frame_idx]
pred_masks = current_out["pred_masks"]
if clear_non_cond_mem:
# clear non-conditioning memory of the surrounding frames
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
storage_key = "non_cond_frame_outputs"
current_out = output_dict[storage_key][frame_idx]
pred_masks = current_out["pred_masks"]
else:
storage_key = "non_cond_frame_outputs"
current_out, pred_masks = self._run_single_frame_inference(
inference_state=inference_state,
output_dict=output_dict,
frame_idx=frame_idx,
batch_size=batch_size,
is_init_cond_frame=False,
point_inputs=None,
mask_inputs=None,
reverse=reverse,
run_mem_encoder=True,
)
output_dict[storage_key][frame_idx] = current_out
# Create slices of per-object outputs for subsequent interaction with each
# individual object after tracking.
self._add_output_per_object(
inference_state, frame_idx, current_out, storage_key
)
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
# Resize the output mask to the original video resolution (we directly use
# the mask scores on GPU for output to avoid any CPU conversion in between)
_, video_res_masks = self._get_orig_video_res_output(
inference_state, pred_masks
)
yield frame_idx, obj_ids, video_res_masks
def _add_output_per_object(
self, inference_state, frame_idx, current_out, storage_key
):
"""
Split a multi-object output into per-object output slices and add them into
`output_dict_per_obj`. The resulting slices share the same tensor storage.
"""
maskmem_features = current_out["maskmem_features"]
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
maskmem_pos_enc = current_out["maskmem_pos_enc"]
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
output_dict_per_obj = inference_state["output_dict_per_obj"]
for obj_idx, obj_output_dict in output_dict_per_obj.items():
obj_slice = slice(obj_idx, obj_idx + 1)
obj_out = {
"maskmem_features": None,
"maskmem_pos_enc": None,
"pred_masks": current_out["pred_masks"][obj_slice],
"obj_ptr": current_out["obj_ptr"][obj_slice],
}
if maskmem_features is not None:
obj_out["maskmem_features"] = maskmem_features[obj_slice]
if maskmem_pos_enc is not None:
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
obj_output_dict[storage_key][frame_idx] = obj_out
@torch.inference_mode()
def reset_state(self, inference_state):
"""Remove all input points or mask in all frames throughout the video."""
self._reset_tracking_results(inference_state)
# Remove all object ids
inference_state["obj_id_to_idx"].clear()
inference_state["obj_idx_to_id"].clear()
inference_state["obj_ids"].clear()
inference_state["point_inputs_per_obj"].clear()
inference_state["mask_inputs_per_obj"].clear()
inference_state["output_dict_per_obj"].clear()
inference_state["temp_output_dict_per_obj"].clear()
def _reset_tracking_results(self, inference_state):
"""Reset all tracking inputs and results across the videos."""
for v in inference_state["point_inputs_per_obj"].values():
v.clear()
for v in inference_state["mask_inputs_per_obj"].values():
v.clear()
for v in inference_state["output_dict_per_obj"].values():
v["cond_frame_outputs"].clear()
v["non_cond_frame_outputs"].clear()
for v in inference_state["temp_output_dict_per_obj"].values():
v["cond_frame_outputs"].clear()
v["non_cond_frame_outputs"].clear()
inference_state["output_dict"]["cond_frame_outputs"].clear()
inference_state["output_dict"]["non_cond_frame_outputs"].clear()
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
inference_state["tracking_has_started"] = False
inference_state["frames_already_tracked"].clear()
def _get_image_feature(self, inference_state, frame_idx, batch_size):
"""Compute the image features on a given frame."""
# Look up in the cache first
image, backbone_out = inference_state["cached_features"].get(
frame_idx, (None, None)
)
if backbone_out is None:
# Cache miss -- we will run inference on a single image
device = inference_state["device"]
image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
backbone_out = self.forward_image(image)
# Cache the most recent frame's feature (for repeated interactions with
# a frame; we can use an LRU cache for more frames in the future).
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
# expand the features to have the same dimension as the number of objects
expanded_image = image.expand(batch_size, -1, -1, -1)
expanded_backbone_out = {
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
}
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
batch_size, -1, -1, -1
)
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
pos = pos.expand(batch_size, -1, -1, -1)
expanded_backbone_out["vision_pos_enc"][i] = pos
features = self._prepare_backbone_features(expanded_backbone_out)
features = (expanded_image,) + features
return features
def _run_single_frame_inference(
self,
inference_state,
output_dict,
frame_idx,
batch_size,
is_init_cond_frame,
point_inputs,
mask_inputs,
reverse,
run_mem_encoder,
prev_sam_mask_logits=None,
):
"""Run tracking on a single frame based on current inputs and previous memory."""
# Retrieve correct image features
(
_,
_,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
) = self._get_image_feature(inference_state, frame_idx, batch_size)
# point and mask should not appear as input simultaneously on the same frame
assert point_inputs is None or mask_inputs is None
current_out = self.track_step(
frame_idx=frame_idx,
is_init_cond_frame=is_init_cond_frame,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
output_dict=output_dict,
num_frames=inference_state["num_frames"],
track_in_reverse=reverse,
run_mem_encoder=run_mem_encoder,
prev_sam_mask_logits=prev_sam_mask_logits,
)
# optionally offload the output to CPU memory to save GPU space
storage_device = inference_state["storage_device"]
maskmem_features = current_out["maskmem_features"]
if maskmem_features is not None:
maskmem_features = maskmem_features.to(torch.bfloat16)
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
pred_masks_gpu = current_out["pred_masks"]
# potentially fill holes in the predicted masks
if self.fill_hole_area > 0:
pred_masks_gpu = fill_holes_in_mask_scores(
pred_masks_gpu, self.fill_hole_area
)
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
obj_ptr = current_out["obj_ptr"]
# make a compact version of this frame's output to reduce the state size
compact_current_out = {
"maskmem_features": maskmem_features,
"maskmem_pos_enc": maskmem_pos_enc,
"pred_masks": pred_masks,
"obj_ptr": obj_ptr,
}
return compact_current_out, pred_masks_gpu
def _run_memory_encoder(
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts
):
"""
Run the memory encoder on `high_res_masks`. This is usually after applying
non-overlapping constraints to object scores. Since their scores changed, their
memory also need to be computed again with the memory encoder.
"""
# Retrieve correct image features
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
inference_state, frame_idx, batch_size
)
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
current_vision_feats=current_vision_feats,
feat_sizes=feat_sizes,
pred_masks_high_res=high_res_masks,
is_mask_from_pts=is_mask_from_pts,
)
# optionally offload the output to CPU memory to save GPU space
storage_device = inference_state["storage_device"]
maskmem_features = maskmem_features.to(torch.bfloat16)
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
maskmem_pos_enc = self._get_maskmem_pos_enc(
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
)
return maskmem_features, maskmem_pos_enc
def _get_maskmem_pos_enc(self, inference_state, current_out):
"""
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
a constant in the inference session to reduce session storage size.
"""
model_constants = inference_state["constants"]
# "out_maskmem_pos_enc" should be either a list of tensors or None
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
if out_maskmem_pos_enc is not None:
if "maskmem_pos_enc" not in model_constants:
assert isinstance(out_maskmem_pos_enc, list)
# only take the slice for one object, since it's same across objects
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
else:
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
# expand the cached maskmem_pos_enc to the actual batch size
batch_size = out_maskmem_pos_enc[0].size(0)
expanded_maskmem_pos_enc = [
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
]
else:
expanded_maskmem_pos_enc = None
return expanded_maskmem_pos_enc
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
"""
Remove the non-conditioning memory around the input frame. When users provide
correction clicks, the surrounding frames' non-conditioning memories can still
contain outdated object appearance information and could confuse the model.
This method clears those non-conditioning memories surrounding the interacted
frame to avoid giving the model both old and new information about the object.
"""
r = self.memory_temporal_stride_for_eval
frame_idx_begin = frame_idx - r * self.num_maskmem
frame_idx_end = frame_idx + r * self.num_maskmem
output_dict = inference_state["output_dict"]
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
for t in range(frame_idx_begin, frame_idx_end + 1):
non_cond_frame_outputs.pop(t, None)
for obj_output_dict in inference_state["output_dict_per_obj"].values():
obj_output_dict["non_cond_frame_outputs"].pop(t, None) |