from PIL import Image import torch import numpy as np class PreparedSrcImg: def __init__(self, src_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori): self.src_rgb = src_rgb self.crop_trans_m = crop_trans_m self.x_s_info = x_s_info self.f_s_user = f_s_user self.x_s_user = x_s_user self.mask_ori = mask_ori def tensor2pil(image): return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) def pil2tensor(image): return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) def rgb_crop(rgb, region): return rgb[region[1]:region[3], region[0]:region[2]] def rgb_crop_batch(rgbs, region): return rgbs[:, region[1]:region[3], region[0]:region[2]] def get_rgb_size(rgb): return rgb.shape[1], rgb.shape[0] def create_transform_matrix(x, y, s_x, s_y): return np.float32([[s_x, 0, x], [0, s_y, y]]) def calc_crop_limit(center, img_size, crop_size): pos = center - crop_size / 2 if pos < 0: crop_size += pos * 2 pos = 0 pos2 = pos + crop_size if img_size < pos2: crop_size -= (pos2 - img_size) * 2 pos2 = img_size pos = pos2 - crop_size return pos, pos2, crop_size def save_image(numpy_array: np.ndarray, output_path: str): out = Image.fromarray(numpy_array) out.save(output_path, compress_level=1, format="png") def image_path_to_array(image_path: str) -> np.ndarray: image = Image.open(image_path) image_array = np.array(image) if len(image_array.shape) <= 3: image_array = image_array[np.newaxis, ...] return image_array