# coding: utf-8 """ utility functions and classes to handle feature extraction and model loading """ import os import os.path as osp import cv2 import torch import yaml import argparse import locale import numpy as np from PIL import Image from rich.console import Console from collections import OrderedDict from ..live_portrait.spade_generator import SPADEDecoder from ..live_portrait.warping_network import WarpingNetwork from ..live_portrait.motion_extractor import MotionExtractor from ..live_portrait.appearance_feature_extractor import AppearanceFeatureExtractor from ..live_portrait.stitching_retargeting_network import StitchingRetargetingNetwork from .rprint import rlog as log def suffix(filename): """a.jpg -> jpg""" pos = filename.rfind(".") if pos == -1: return "" return filename[pos + 1:] def prefix(filename): """a.jpg -> a""" pos = filename.rfind(".") if pos == -1: return filename return filename[:pos] def basename(filename): """a/b/c.jpg -> c""" return prefix(osp.basename(filename)) def is_video(file_path): if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path): return True return False def is_template(file_path): if file_path.endswith(".pkl"): return True return False def mkdir(d, log=False): # return self-assined `d`, for one line code if not osp.exists(d): os.makedirs(d, exist_ok=True) if log: print(f"Make dir: {d}") return d def squeeze_tensor_to_numpy(tensor): out = tensor.data.squeeze(0).cpu().numpy() return out def dct2cuda(dct: dict, device_id: int): for key in dct: dct[key] = torch.tensor(dct[key]).cuda(device_id) return dct def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ kp_source: (bs, k, 3) kp_driving: (bs, k, 3) Return: (bs, 2k*3) """ bs_src = kp_source.shape[0] bs_dri = kp_driving.shape[0] assert bs_src == bs_dri, 'batch size must be equal' feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1) return feat # get coefficients of Eqn. 7 def calculate_transformation(config, s_kp_info, t_0_kp_info, t_i_kp_info, R_s, R_t_0, R_t_i): if config.relative: new_rotation = (R_t_i @ R_t_0.permute(0, 2, 1)) @ R_s new_expression = s_kp_info['exp'] + (t_i_kp_info['exp'] - t_0_kp_info['exp']) else: new_rotation = R_t_i new_expression = t_i_kp_info['exp'] new_translation = s_kp_info['t'] + (t_i_kp_info['t'] - t_0_kp_info['t']) new_translation[..., 2].fill_(0) # Keep the z-axis unchanged new_scale = s_kp_info['scale'] * (t_i_kp_info['scale'] / t_0_kp_info['scale']) return new_rotation, new_expression, new_translation, new_scale def load_description(fp): with open(fp, 'r', encoding='utf-8') as f: content = f.read() return content def resize_to_limit(img, max_dim=1280, n=2): h, w = img.shape[:2] if max_dim > 0 and max(h, w) > max_dim: if h > w: new_h = max_dim new_w = int(w * (max_dim / h)) else: new_w = max_dim new_h = int(h * (max_dim / w)) img = cv2.resize(img, (new_w, new_h)) n = max(n, 1) new_h = img.shape[0] - (img.shape[0] % n) new_w = img.shape[1] - (img.shape[1] % n) if new_h == 0 or new_w == 0: return img if new_h != img.shape[0] or new_w != img.shape[1]: img = img[:new_h, :new_w] return img def load_yaml(file_path): encoding = locale.getpreferredencoding(False) with open(file_path, 'r', encoding=encoding) as file: data = yaml.safe_load(file) return data def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def save_image(numpy_array: np.ndarray, output_path: str): out = Image.fromarray(numpy_array) out.save(output_path, compress_level=1, format="png")