import streamlit as st
import time
import json
from gensim.models import Word2Vec
import pandas as pd
import matplotlib.pyplot as plt
import squarify
import numpy as np
import re
import urllib.request
st.set_page_config(
page_title="FATA4 Science",
page_icon=":microscope:",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'About': "FATA4 Science is a Natural Language Processing (NLP) that ...."
}
)
# Define the HTML and CSS styles
st.markdown("""
""", unsafe_allow_html=True)
st.markdown("""
""", unsafe_allow_html=True)
opt=st.sidebar.radio("Select a PubMed Corpus", options=('Clotting corpus', 'Neuroblastoma corpus'))
if opt == "Clotting corpus":
model_used = ("pubmed_model_clotting")
num_abstracts = 45493
database_name = "Clotting"
if opt == "Neuroblastoma corpus":
model_used = ("pubmed_model_neuroblastoma")
num_abstracts = 29032
database_name = "Neuroblastoma"
st.title(":red[Fast Acting Text Analysis (FATA) 4 Science]")
st.markdown("---")
st.subheader("Uncovering knowledge through Natural Language Processing (NLP)")
st.header(f"{database_name} Pubmed corpus.")
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
query = text_input_value
query = query.lower()
query = re.sub("[,.?!&*;:]", "", query)
matches = [" "]
if any([x in query for x in matches]):
st.write("Please only enter one term or a term without spaces")
# query = input ("Enter your keyword(s):")
if query:
bar = st.progress(0)
time.sleep(.2)
st.caption(f":LightSkyBlue[searching {num_abstracts} {database_name} PubMed abstracts] covering 1990-2022")
for i in range(10):
bar.progress((i + 1) * 10)
time.sleep(.1)
try:
model = Word2Vec.load(model_used) # you can continue training with the loaded model!
words = list(model.wv.key_to_index)
X = model.wv[model.wv.key_to_index]
model2 = model.wv[query]
df = pd.DataFrame(X)
except:
st.error("Term occurrence is too low - please try another term")
st.stop()
# def findRelationships(query, df):
table = model.wv.most_similar_cosmul(query, topn=10000)
table = (pd.DataFrame(table))
table.index.name = 'Rank'
table.columns = ['Word', 'SIMILARITY']
print()
print("Similarity to " + str(query))
pd.set_option('display.max_rows', None)
print(table.head(50))
# table.head(10).to_csv("clotting_sim1.csv", index=True)
# short_table = table.head(50)
# print(table)
st.subheader(f"Top 10 Words closely related to {query}")
# calculate the sizes of the squares in the treemap
short_table = table.head(10)
short_table.index += 1
short_table.index = 1 / short_table.index
sizes = short_table.index.tolist()
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
color = [cmap[i] for i in range(len(sizes))]
short_table.set_index('Word', inplace=True)
squarify.plot(sizes=sizes, label=short_table.index.tolist(), color=color, edgecolor="#EBF5FB",
text_kwargs={'fontsize': 10})
# # plot the treemap using matplotlib
plt.axis('off')
fig = plt.gcf()
fig.patch.set_facecolor('#CCFFFF')
# # display the treemap in Streamlit
st.pyplot(fig)
plt.clf()
csv = table.head(100).to_csv().encode('utf-8')
st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
# st.write(short_table)
#
print()
print("Human genes similar to " + str(query))
df1 = table
df2 = pd.read_csv('Human_Genes.csv')
m = df1.Word.isin(df2.symbol)
df1 = df1[m]
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
df1["Human Gene"] = df1["Human Gene"].str.upper()
print(df1.head(50))
print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
st.subheader(f"Top 10 Genes closely related to {query}")
df10 = df1.head(10)
df10.index = 1 / df10.index
sizes = df10.index.tolist()
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
color2 = [cmap2[i] for i in range(len(sizes))]
df10.set_index('Human Gene', inplace=True)
squarify.plot(sizes=sizes, label=df10.index.tolist(), color=color2, edgecolor="#EBF5FB",
text_kwargs={'fontsize': 12})
#
# # plot the treemap using matplotlib
plt.axis('off')
fig2 = plt.gcf()
fig2.patch.set_facecolor('#CCFFFF')
# plt.show()
#
# # display the treemap in Streamlit
st.pyplot(fig2)
csv = df1.head(100).to_csv().encode('utf-8')
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
mime='text/csv')
if query:
search_keyword = {query}
html = urllib.request.urlopen(f"https://www.youtube.com/results?search_query={database_name}")
video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode())
# st.video("https://www.youtube.com/watch?v=" + video_ids[0])
VIDEO_DATA = "https://www.youtube.com/watch?v=" + video_ids[0]
width = 80
side = 10
_, container, _ = st.columns([side, width, side])
container.video(data=VIDEO_DATA)
# model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
# similar_words = model.most_similar(word)
# output = json.dumps({"word": word, "similar_words": similar_words})
# st.write(output)