import fastai
import fastai.vision
import PIL
import gradio
import matplotlib
import numpy
import pandas
from fastai.vision.all import *
# Crear la clase
class ADA_SKIN(object):
# Inicializar el objeto
def __init__(self, name="Wallaby", verbose=True, *args, **kwargs):
super(ADA_SKIN, self).__init__(*args, **kwargs)
self.author = "Jey"
self.name = name
if verbose:
self._ph()
self._pp("Hola desde la clase", str(self.__class__) + " Clase: " + str(self.__class__.__name__))
self._pp("Nombre del código", self.name)
self._pp("Autor", self.author)
self._ph()
self.article = '
Predice las siguientes patologias en piel
'
self.article += '- Enfermedad de Bowen (AKIEC)
'
self.article += '- Carcinoma de células basales
'
self.article += '- Lesiones benignas similares a queratosis
'
self.article += '- Dermatofibroma
'
self.article += '- Melanoma
'
self.article += '- Lunares melanocíticos
'
self.article += '- Carcinoma de células escamosas
'
self.article += '- Lesiones vasculares
'
self.article += '- Benigno
'
self.article += '
'
self.article += ' Prueba Jey(2023)
'
self.examples = ['akiec1.jpg','bcc1.jpg','bkl1.jpg','df1.jpg','mel1.jpg',
'nevi1.jpg','scc1.jpg','vl1.jpg','benign1.jpg','benign3.jpg']
self.title = "Predicción Cáncer de Piel prueba "
return
# Imprimir de manera legible el nombre y valor de una línea
def _pp(self, a, b):
print("%34s : %s" % (str(a), str(b)))
return
# Imprimir la línea de encabezado o pie de página
def _ph(self):
print("-" * 34, ":", "-" * 34)
return
def _predict_image(self, img, cat):
pred, idx, probs = learn.predict(img)
return dict(zip(cat, map(float, probs)))
def _predict_image2(self, img, cat):
pred, idx, probs = learn2.predict(img)
return dict(zip(cat, map(float, probs)))
def _draw_pred(self, df_pred, df2):
canvas, pic = matplotlib.pyplot.subplots(1, 2, figsize=(12, 6))
ti = df_pred["vocab"].head(3).values
ti2 = df2["vocab"].head(2).values
try:
df_pred["pred"].head(3).plot(ax=pic[0], kind="pie",
cmap="Set2", labels=ti, explode=(0.02, 0, 0),
wedgeprops=dict(width=.4),
normalize=False)
df2["pred"].head(2).plot(ax=pic[1], kind="pie",
colors=["cornflowerblue", "darkorange"], labels=ti2, explode=(0.02, 0),
wedgeprops=dict(width=.4),
normalize=False)
except:
df_pred["pred"].head(3).plot(ax=pic[0], kind="pie",
cmap="Set2", labels=ti, explode=(0.02, 0, 0),
wedgeprops=dict(width=.4))
df2["pred"].head(2).plot(ax=pic[1], kind="pie",
colors=["cornflowerblue", "darkorange"], labels=ti2, explode=(0.02, 0),
wedgeprops=dict(width=.4))
t = str(ti[0]) + ": " + str(numpy.round(df_pred.head(1).pred.values[0] * 100, 2)) + "% de predicción"
pic[0].set_title(t, fontsize=14.0, fontweight="bold")
pic[0].axis('off')
pic[0].legend(ti, loc="lower right", title="Cáncer de Piel: ")
k0 = numpy.round(df2.head(1).pred.values[0] * 100, 2)
k1 = numpy.round(df2.tail(1).pred.values[0] * 100, 2)
if k0 > k1:
t2 = str(ti2[0]) + ": " + str(k0) + "% de predicción"
else:
t2 = str(ti2[1]) + ": " + str(k1) + "% de predicción"
pic[1].set_title(t2, fontsize=14.0, fontweight="bold")
pic[1].axis('off')
pic[1].legend(ti2, loc="lower right", title="Prediccíon Cáncer de Piel:")
canvas.tight_layout()
return canvas
def predict_donut(self, img):
d = self._predict_image(img, self.categories)
df = pandas.DataFrame(d, index=[0])
df = df.transpose().reset_index()
df.columns = ["vocab", "pred"]
df.sort_values("pred", inplace=True, ascending=False, ignore_index=True)
d2 = self._predict_image2(img, self.categories2)
df2 = pandas.DataFrame(d2, index=[0])
df2 = df2.transpose().reset_index()
df2.columns = ["vocab", "pred"]
canvas = self._draw_pred(df, df2)
return canvas
maxi = ADA_SKIN(verbose=False)
learn = fastai.learner.load_learner('ada_learn_skin_norm2000.pkl')
learn2 = fastai.learner.load_learner('ada_learn_malben.pkl')
maxi.categories = learn.dls.vocab
maxi.categories2 = learn2.dls.vocab
hf_image = gradio.inputs.Image(shape=(192, 192))
hf_label = gradio.outputs.Label()
intf = gradio.Interface(fn=maxi.predict_donut,
inputs=hf_image,
outputs=["plot"],
examples=maxi.examples,
title=maxi.title,
live=True,
article=maxi.article)
intf.launch(inline=False, share=True)