Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# --- Imports ---
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
|
@@ -12,8 +26,6 @@ import mimetypes
|
|
| 12 |
import subprocess # For yt-dlp
|
| 13 |
import io # For BytesIO with PIL
|
| 14 |
|
| 15 |
-
# Removed: from huggingface_hub import get_space_runtime - not used for username with OAuth
|
| 16 |
-
|
| 17 |
# --- Global Variables for Startup Status ---
|
| 18 |
missing_vars_startup_list_global = []
|
| 19 |
agent_pre_init_status_msg_global = "Agent status will be determined at startup."
|
|
@@ -21,16 +33,16 @@ agent_pre_init_status_msg_global = "Agent status will be determined at startup."
|
|
| 21 |
# File Processing Libs
|
| 22 |
try: from PyPDF2 import PdfReader; PYPDF2_AVAILABLE = True
|
| 23 |
except ImportError: PYPDF2_AVAILABLE = False; print("WARNING: PyPDF2 not found, PDF tool will be disabled.")
|
| 24 |
-
try: from PIL import Image; import pytesseract; PIL_TESSERACT_AVAILABLE = True
|
| 25 |
except ImportError: PIL_TESSERACT_AVAILABLE = False; print("WARNING: Pillow or Pytesseract not found, OCR tool will be disabled.")
|
| 26 |
try: import whisper; WHISPER_AVAILABLE = True
|
| 27 |
except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")
|
| 28 |
|
| 29 |
-
# Google GenAI (Used by LangChain integration)
|
| 30 |
-
from google.
|
| 31 |
|
| 32 |
# LangChain
|
| 33 |
-
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
|
| 34 |
from langchain.prompts import PromptTemplate
|
| 35 |
from langchain.tools import BaseTool, tool as lc_tool_decorator
|
| 36 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
@@ -41,13 +53,13 @@ from langchain_experimental.tools import PythonREPLTool
|
|
| 41 |
# LangGraph Conditional Imports
|
| 42 |
if TYPE_CHECKING:
|
| 43 |
from langgraph.graph import StateGraph as StateGraphAliasedForHinting
|
| 44 |
-
from langgraph.prebuilt import
|
| 45 |
from typing_extensions import TypedDict
|
| 46 |
from langgraph.checkpoint.base import BaseCheckpointSaver
|
| 47 |
|
| 48 |
LANGGRAPH_FLAVOR_AVAILABLE = False
|
| 49 |
LG_StateGraph: Optional[Type[Any]] = None
|
| 50 |
-
|
| 51 |
LG_END: Optional[Any] = None
|
| 52 |
LG_ToolInvocation: Optional[Type[Any]] = None
|
| 53 |
add_messages: Optional[Any] = None
|
|
@@ -55,40 +67,56 @@ MemorySaver_Class: Optional[Type[Any]] = None
|
|
| 55 |
|
| 56 |
AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
|
| 57 |
TOOLS: List[BaseTool] = []
|
| 58 |
-
LLM_INSTANCE: Optional[ChatGoogleGenerativeAI] = None
|
| 59 |
LANGGRAPH_MEMORY_SAVER: Optional[Any] = None
|
| 60 |
|
| 61 |
-
#
|
| 62 |
from google import genai as google_genai_sdk
|
| 63 |
-
google_genai_client: Optional[google_genai_sdk.Client] = None
|
| 64 |
-
# --- End google-genai Client SDK section ---
|
| 65 |
|
| 66 |
try:
|
| 67 |
from langgraph.graph import StateGraph, END
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
LANGGRAPH_FLAVOR_AVAILABLE = False
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
# --- Constants ---
|
| 82 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 83 |
-
|
| 84 |
-
GEMINI_MODEL_NAME = "gemini-2.5-pro-preview-05-06" # Retained from original for planner
|
| 85 |
-
# GEMINI_FLASH_MULTIMODAL_MODEL_NAME is for the new direct multimodal tool (google-genai client SDK)
|
| 86 |
GEMINI_FLASH_MULTIMODAL_MODEL_NAME = "gemini-2.0-flash-exp"
|
| 87 |
-
|
| 88 |
SCORING_API_BASE_URL = os.getenv("SCORING_API_URL", DEFAULT_API_URL)
|
| 89 |
MAX_FILE_SIZE_BYTES = 50 * 1024 * 1024
|
| 90 |
LOCAL_FILE_STORE_PATH = "./Data"
|
| 91 |
-
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
|
| 92 |
|
| 93 |
# --- Global State ---
|
| 94 |
WHISPER_MODEL: Optional[Any] = None
|
|
@@ -108,13 +136,13 @@ if GOOGLE_API_KEY:
|
|
| 108 |
logger.info("google-genai SDK Client initialized successfully.")
|
| 109 |
except Exception as e:
|
| 110 |
logger.error(f"Failed to initialize google-genai SDK Client: {e}")
|
| 111 |
-
google_genai_client = None
|
| 112 |
else:
|
| 113 |
-
logger.warning("GOOGLE_API_KEY not found. google-genai SDK Client
|
| 114 |
-
# --- End Initialize google-genai Client SDK ---
|
| 115 |
|
| 116 |
-
# --- Helper Functions (Unchanged
|
| 117 |
def _strip_exact_match_answer(text: Any) -> str:
|
|
|
|
| 118 |
if not isinstance(text, str): text = str(text)
|
| 119 |
text_lower_check = text.lower()
|
| 120 |
if text_lower_check.startswith("final answer:"):
|
|
@@ -132,15 +160,17 @@ def _strip_exact_match_answer(text: Any) -> str:
|
|
| 132 |
return text.strip()
|
| 133 |
|
| 134 |
def _is_full_url(url_string: str) -> bool:
|
|
|
|
| 135 |
try: result = urlparse(url_string); return all([result.scheme, result.netloc])
|
| 136 |
except ValueError: return False
|
| 137 |
|
| 138 |
def _is_youtube_url(url: str) -> bool:
|
|
|
|
| 139 |
parsed_url = urlparse(url)
|
| 140 |
return parsed_url.netloc.lower().endswith(("youtube.com", "youtu.be"))
|
| 141 |
|
| 142 |
def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None) -> str:
|
| 143 |
-
# ... (Your original _download_file function - unchanged)
|
| 144 |
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
|
| 145 |
logger.debug(f"Download request: '{file_identifier}', task_id: {task_id_for_file}")
|
| 146 |
original_filename = os.path.basename(urlparse(file_identifier).path) if _is_full_url(file_identifier) else os.path.basename(file_identifier)
|
|
@@ -221,8 +251,8 @@ def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None)
|
|
| 221 |
|
| 222 |
if effective_save_path != tentative_local_path and os.path.exists(effective_save_path) and os.path.getsize(effective_save_path) > 0:
|
| 223 |
logger.info(f"Cached file (CD name): {effective_save_path}"); return effective_save_path
|
| 224 |
-
with open(effective_save_path, "wb") as
|
| 225 |
-
for chunk in r.iter_content(chunk_size=1024*1024):
|
| 226 |
logger.info(f"File downloaded to {effective_save_path}"); return effective_save_path
|
| 227 |
except requests.exceptions.HTTPError as e:
|
| 228 |
err_msg = f"HTTP {e.response.status_code} for {file_url_to_try}. Detail: {e.response.text[:100]}"
|
|
@@ -230,7 +260,7 @@ def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None)
|
|
| 230 |
except Exception as e:
|
| 231 |
logger.error(f"Download error for {file_url_to_try}: {e}", exc_info=True); return f"Error: {str(e)[:100]}"
|
| 232 |
|
| 233 |
-
# --- Tool Function Definitions
|
| 234 |
READ_PDF_TOOL_DESC = "Reads text content from a PDF file. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."
|
| 235 |
@lc_tool_decorator(description=READ_PDF_TOOL_DESC)
|
| 236 |
def read_pdf_tool(action_input_json_str: str) -> str:
|
|
@@ -242,19 +272,18 @@ def read_pdf_tool(action_input_json_str: str) -> str:
|
|
| 242 |
path = _download_file(file_id, task_id)
|
| 243 |
if path.startswith("Error:"): return path
|
| 244 |
try:
|
| 245 |
-
|
| 246 |
-
with open(path, "rb") as
|
| 247 |
-
reader = PdfReader(
|
| 248 |
if reader.is_encrypted:
|
| 249 |
try: reader.decrypt('')
|
| 250 |
except: return f"Error: PDF '{path}' encrypted."
|
| 251 |
for page_num in range(len(reader.pages)):
|
| 252 |
page = reader.pages[page_num]
|
| 253 |
-
|
| 254 |
-
return
|
| 255 |
except Exception as e: return f"Error reading PDF '{path}': {e}"
|
| 256 |
|
| 257 |
-
|
| 258 |
OCR_IMAGE_TOOL_DESC = "Extracts text from an image using OCR. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."
|
| 259 |
@lc_tool_decorator(description=OCR_IMAGE_TOOL_DESC)
|
| 260 |
def ocr_image_tool(action_input_json_str: str) -> str:
|
|
@@ -285,143 +314,189 @@ def transcribe_audio_tool(action_input_json_str: str) -> str:
|
|
| 285 |
try: result = WHISPER_MODEL.transcribe(path, fp16=False); return result["text"][:40000] # type: ignore
|
| 286 |
except Exception as e: logger.error(f"Whisper error on '{path}': {e}", exc_info=True); return f"Error transcribing '{path}': {e}"
|
| 287 |
|
| 288 |
-
# +++ NEW TOOL using google-genai Client SDK for Multimodal Prompts +++
|
| 289 |
DIRECT_MULTIMODAL_GEMINI_TOOL_DESC = (
|
| 290 |
"Processes an image file (URL or local path) along with a text prompt using a Gemini multimodal model (gemini-2.0-flash-exp) "
|
| 291 |
-
"for tasks like image description,
|
| 292 |
-
"Input: JSON '{\"file_identifier\": \"IMAGE_FILENAME_OR_URL\", \"text_prompt\": \"Your question or instruction
|
| 293 |
"Returns the model's text response."
|
| 294 |
)
|
| 295 |
@lc_tool_decorator(description=DIRECT_MULTIMODAL_GEMINI_TOOL_DESC)
|
| 296 |
def direct_multimodal_gemini_tool(action_input_json_str: str) -> str:
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
if not PIL_TESSERACT_AVAILABLE :
|
| 301 |
-
return "Error: Pillow (PIL) library is not available for image processing."
|
| 302 |
-
|
| 303 |
try:
|
| 304 |
data = json.loads(action_input_json_str)
|
| 305 |
file_identifier = data.get("file_identifier")
|
| 306 |
-
text_prompt = data.get("text_prompt", "Describe this image.")
|
| 307 |
-
task_id = data.get("task_id")
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
return "Error: 'file_identifier' for the image is missing in the input."
|
| 311 |
-
|
| 312 |
-
logger.info(f"Direct Multimodal Tool: Processing image '{file_identifier}' with prompt '{text_prompt}'")
|
| 313 |
-
|
| 314 |
-
# Download the file to a local path (handles URLs and GAIA files)
|
| 315 |
local_image_path = _download_file(file_identifier, task_id)
|
| 316 |
-
if local_image_path.startswith("Error:"):
|
| 317 |
-
return f"Error downloading image for Direct Multimodal Tool: {local_image_path}"
|
| 318 |
-
|
| 319 |
-
# Open the image using Pillow
|
| 320 |
try:
|
| 321 |
pil_image = Image.open(local_image_path)
|
| 322 |
-
|
| 323 |
-
except Exception as e_img:
|
| 324 |
-
logger.error(f"Error opening image at {local_image_path}: {e_img}")
|
| 325 |
-
return f"Error opening image file {local_image_path}: {str(e_img)}"
|
| 326 |
-
|
| 327 |
-
# Send to Gemini Flash model using the client SDK
|
| 328 |
response = google_genai_client.models.generate_content(
|
| 329 |
-
model=GEMINI_FLASH_MULTIMODAL_MODEL_NAME,
|
| 330 |
-
contents=[pil_image, text_prompt] # Pass PIL image and text prompt
|
| 331 |
)
|
| 332 |
-
logger.info(f"Direct Multimodal Tool: Response
|
| 333 |
-
return response.text[:40000]
|
| 334 |
-
|
| 335 |
-
except
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
|
| 343 |
-
# --- Agent Prompts (Slightly updated to include the new tool name if available) ---
|
| 344 |
-
# (Agent prompts remain largely the same, the agent will learn to use tools from their descriptions)
|
| 345 |
-
|
| 346 |
# --- Agent Initialization and Response Logic ---
|
| 347 |
def initialize_agent_and_tools(force_reinit=False):
|
| 348 |
-
global AGENT_INSTANCE, TOOLS, LLM_INSTANCE, LANGGRAPH_FLAVOR_AVAILABLE, LG_StateGraph,
|
| 349 |
if AGENT_INSTANCE and not force_reinit: logger.info("Agent already initialized."); return
|
| 350 |
logger.info("Initializing agent and tools...")
|
| 351 |
if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY not set for LangChain LLM.")
|
| 352 |
|
| 353 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
try:
|
| 355 |
-
LLM_INSTANCE = ChatGoogleGenerativeAI(
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
logger.info(f"LangChain LLM (Planner) initialized: {GEMINI_MODEL_NAME}")
|
| 360 |
-
except Exception as e:
|
|
|
|
|
|
|
| 361 |
|
| 362 |
TOOLS = []
|
| 363 |
if PYPDF2_AVAILABLE: TOOLS.append(read_pdf_tool)
|
| 364 |
if PIL_TESSERACT_AVAILABLE: TOOLS.append(ocr_image_tool)
|
| 365 |
if WHISPER_AVAILABLE: TOOLS.append(transcribe_audio_tool)
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
if google_genai_client and PIL_TESSERACT_AVAILABLE: # PIL_TESSERACT_AVAILABLE implies PIL is available
|
| 369 |
-
TOOLS.append(direct_multimodal_gemini_tool)
|
| 370 |
-
logger.info("Added 'direct_multimodal_gemini_tool'.")
|
| 371 |
-
else:
|
| 372 |
-
logger.warning("'direct_multimodal_gemini_tool' NOT added due to missing google_genai_client or PIL.")
|
| 373 |
-
|
| 374 |
try: search_tool = DuckDuckGoSearchRun(name="web_search"); search_tool.description = "Web search. Input: query."; TOOLS.append(search_tool)
|
| 375 |
except Exception as e: logger.warning(f"DuckDuckGoSearchRun init failed: {e}")
|
| 376 |
try: python_repl = PythonREPLTool(name="python_repl"); python_repl.description = "Python REPL. print() for output."; TOOLS.append(python_repl)
|
| 377 |
except Exception as e: logger.warning(f"PythonREPLTool init failed: {e}")
|
| 378 |
logger.info(f"Final tools list for agent: {[t.name for t in TOOLS]}")
|
| 379 |
|
| 380 |
-
|
| 381 |
-
# ... (Rest of your initialize_agent_and_tools function for LangGraph/ReAct setup - unchanged)
|
| 382 |
-
if LANGGRAPH_FLAVOR_AVAILABLE and all([LG_StateGraph, LG_ToolExecutor, LG_END, LLM_INSTANCE, LG_ToolInvocation, add_messages]):
|
| 383 |
if not LANGGRAPH_MEMORY_SAVER and MemorySaver_Class: LANGGRAPH_MEMORY_SAVER = MemorySaver_Class(); logger.info("LangGraph MemorySaver initialized.")
|
| 384 |
try:
|
| 385 |
-
logger.info(f"Attempting LangGraph init (
|
| 386 |
_TypedDict = getattr(__import__('typing_extensions'), 'TypedDict', dict)
|
| 387 |
-
class AgentState(_TypedDict): input: str; messages: Annotated[List[Any], add_messages]
|
| 388 |
|
| 389 |
-
|
| 390 |
-
tools="\n".join([f"- {t.name}: {t.description}" for t in TOOLS]),
|
| 391 |
-
input="{input}"
|
| 392 |
)
|
| 393 |
def agent_node(state: AgentState):
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
return {"messages": [
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
continue
|
| 412 |
try:
|
| 413 |
-
logger.info(f"LG Tool Invoking: '{
|
| 414 |
-
tool_invocation_obj_lg = LG_ToolInvocation(tool=
|
| 415 |
-
|
| 416 |
-
|
|
|
|
| 417 |
except Exception as e_tool_node_lg:
|
| 418 |
-
logger.error(f"LG Tool Error ('{
|
| 419 |
-
|
| 420 |
-
return {"messages":
|
|
|
|
| 421 |
|
| 422 |
workflow_lg = LG_StateGraph(AgentState) # type: ignore
|
| 423 |
workflow_lg.add_node("agent", agent_node)
|
| 424 |
-
|
|
|
|
|
|
|
| 425 |
workflow_lg.set_entry_point("agent")
|
| 426 |
def should_continue_lg(state: AgentState): return "tools" if state['messages'][-1].tool_calls else LG_END
|
| 427 |
workflow_lg.add_conditional_edges("agent", should_continue_lg, {"tools": "tools", LG_END: LG_END}) # type: ignore
|
|
@@ -450,11 +525,9 @@ def initialize_agent_and_tools(force_reinit=False):
|
|
| 450 |
if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
|
| 451 |
logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")
|
| 452 |
|
| 453 |
-
|
| 454 |
-
# --- get_agent_response, construct_prompt_for_agent, run_and_submit_all ---
|
| 455 |
-
# --- These functions remain UNCHANGED from your original code ---
|
| 456 |
def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
|
| 457 |
-
# ... (Your original get_agent_response logic) ...
|
| 458 |
global AGENT_INSTANCE, LLM_INSTANCE
|
| 459 |
thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
|
| 460 |
if not AGENT_INSTANCE or not LLM_INSTANCE:
|
|
@@ -470,7 +543,7 @@ def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Opti
|
|
| 470 |
logger.debug(f"Using LangGraph agent (Memory: {LANGGRAPH_MEMORY_SAVER is not None}) for thread: {thread_id_to_use}")
|
| 471 |
initial_messages_lg_get = []
|
| 472 |
input_for_lg_get = {"input": prompt, "messages": initial_messages_lg_get}
|
| 473 |
-
final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}})
|
| 474 |
if not final_state_lg_get or 'messages' not in final_state_lg_get or not final_state_lg_get['messages']:
|
| 475 |
logger.error("LangGraph: No final state/messages."); return "[ERROR] LangGraph: No final state/messages."
|
| 476 |
for message_item_lg_get in reversed(final_state_lg_get['messages']):
|
|
@@ -489,7 +562,7 @@ def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Opti
|
|
| 489 |
return f"[ERROR] Agent execution failed: {str(e_agent_run_get)[:150]}"
|
| 490 |
|
| 491 |
def construct_prompt_for_agent(q: Dict[str,Any]) -> str:
|
| 492 |
-
# ... (Your original construct_prompt_for_agent logic) ...
|
| 493 |
tid,q_str=q.get("task_id","N/A"),q.get("question",""); files=q.get("files",[])
|
| 494 |
files_info = ("\nFiles:\n"+"\n".join([f"- {f} (task_id:{tid})"for f in files])) if files else ""
|
| 495 |
level = f"\nLevel:{q.get('level')}" if q.get('level') else ""
|
|
@@ -500,19 +573,16 @@ def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
|
|
| 500 |
global AGENT_INSTANCE
|
| 501 |
space_id = os.getenv("SPACE_ID")
|
| 502 |
username_for_submission = None
|
| 503 |
-
|
| 504 |
if profile and hasattr(profile, 'username') and profile.username:
|
| 505 |
username_for_submission = profile.username
|
| 506 |
logger.info(f"Username from OAuth profile: {username_for_submission}")
|
| 507 |
else:
|
| 508 |
logger.warning("OAuth profile not available or username missing.")
|
| 509 |
return "Hugging Face login required. Please use the login button and try again.", None
|
| 510 |
-
|
| 511 |
if AGENT_INSTANCE is None:
|
| 512 |
try: logger.info("Agent not pre-initialized. Initializing for run..."); initialize_agent_and_tools()
|
| 513 |
except Exception as e: return f"Agent on-demand initialization failed: {e}", None
|
| 514 |
if AGENT_INSTANCE is None: return "Agent is still None after on-demand init.", None
|
| 515 |
-
|
| 516 |
agent_code_url_run=f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_dev_run"
|
| 517 |
questions_url_run,submit_url_run=f"{DEFAULT_API_URL}/questions",f"{DEFAULT_API_URL}/submit"
|
| 518 |
auth_headers_run={"Authorization":f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN else {}
|
|
@@ -522,7 +592,6 @@ def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
|
|
| 522 |
if not questions_data_run or not isinstance(questions_data_run,list):logger.error(f"Invalid questions data: {questions_data_run}");return "Fetched questions_data invalid.",None
|
| 523 |
logger.info(f"Fetched {len(questions_data_run)} questions.")
|
| 524 |
except Exception as e:logger.error(f"Fetch questions error: {e}",exc_info=True);return f"Fetch questions error:{e}",None
|
| 525 |
-
|
| 526 |
results_log_run,answers_payload_run=[],[]
|
| 527 |
logger.info(f"Running agent on {len(questions_data_run)} questions for user '{username_for_submission}'...")
|
| 528 |
for i,item_run in enumerate(questions_data_run):
|
|
@@ -538,7 +607,6 @@ def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
|
|
| 538 |
logger.error(f"Agent error task {task_id_run}:{e}",exc_info=True);error_answer_run=f"AGENT ERROR:{str(e)[:100]}"
|
| 539 |
answers_payload_run.append({"task_id":task_id_run,"submitted_answer":"N/A [AGENT_ERROR]"})
|
| 540 |
results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":error_answer_run,"Submitted Answer":"N/A [AGENT_ERROR]"})
|
| 541 |
-
|
| 542 |
if not answers_payload_run:return "Agent produced no answers.",pd.DataFrame(results_log_run)
|
| 543 |
submission_payload_run={"username":username_for_submission.strip(),"agent_code":agent_code_url_run,"answers":answers_payload_run}
|
| 544 |
logger.info(f"Submitting {len(answers_payload_run)} answers to {submit_url_run} for user '{username_for_submission}'...")
|
|
@@ -551,10 +619,8 @@ def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
|
|
| 551 |
error_http_run=f"HTTP {e.response.status_code}. Detail:{e.response.text[:200]}"; logger.error(f"Submit Fail:{error_http_run}",exc_info=True); return f"Submit Fail:{error_http_run}",pd.DataFrame(results_log_run)
|
| 552 |
except Exception as e:logger.error(f"Submit Fail unexpected:{e}",exc_info=True);return f"Submit Fail:{str(e)[:100]}",pd.DataFrame(results_log_run)
|
| 553 |
|
| 554 |
-
|
| 555 |
-
# --- Build Gradio Interface (Unchanged from your original) ---
|
| 556 |
with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !important;}",theme=gr.themes.Soft()) as demo:
|
| 557 |
-
# ... (Your original Gradio UI layout - unchanged) ...
|
| 558 |
gr.Markdown("# GAIA Agent Challenge Runner v7 (OAuth for Username)")
|
| 559 |
gr.Markdown(f"""**Instructions:**
|
| 560 |
1. **Login with Hugging Face** using the button below. Your HF username will be used for submission.
|
|
@@ -569,12 +635,11 @@ with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !
|
|
| 569 |
gr.LoginButton()
|
| 570 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 571 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=7, interactive=False)
|
| 572 |
-
results_table = gr.DataFrame(label="Q&A Log", headers=["Task ID","Question","Prompt","Raw","Submitted"], wrap=True)
|
| 573 |
|
| 574 |
run_button.click(fn=run_and_submit_all, outputs=[status_output,results_table], api_name="run_evaluation")
|
| 575 |
|
| 576 |
def update_ui_on_load_fn_within_context():
|
| 577 |
-
# ... (Your original update_ui_on_load_fn_within_context logic - unchanged) ...
|
| 578 |
global missing_vars_startup_list_global, agent_pre_init_status_msg_global
|
| 579 |
secrets_msg_md = ""
|
| 580 |
if missing_vars_startup_list_global:
|
|
@@ -587,20 +652,21 @@ with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !
|
|
| 587 |
if env_issues: secrets_msg_md += f"<br/><font color='orange'>**Tool Deps Missing:** {', '.join(env_issues)}.</font>"
|
| 588 |
current_status_md = agent_pre_init_status_msg_global
|
| 589 |
if not LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
|
| 590 |
-
current_status_md += " (LangGraph core
|
|
|
|
|
|
|
| 591 |
return { agent_status_display: gr.Markdown(value=current_status_md),
|
| 592 |
missing_secrets_display: gr.Markdown(value=secrets_msg_md) }
|
| 593 |
|
| 594 |
demo.load(update_ui_on_load_fn_within_context, [], [agent_status_display, missing_secrets_display])
|
| 595 |
|
| 596 |
if __name__ == "__main__":
|
| 597 |
-
|
| 598 |
-
logger.info("Application starting up (v7 with Direct Multimodal Tool)...")
|
| 599 |
if not PYPDF2_AVAILABLE: logger.warning("PyPDF2 (PDF tool) NOT AVAILABLE.")
|
| 600 |
-
if not PIL_TESSERACT_AVAILABLE: logger.warning("Pillow/Pytesseract (OCR tool) NOT AVAILABLE.")
|
| 601 |
if not WHISPER_AVAILABLE: logger.warning("Whisper (Audio tool) NOT AVAILABLE.")
|
| 602 |
-
if LANGGRAPH_FLAVOR_AVAILABLE: logger.info("Core LangGraph (StateGraph, END) loaded.")
|
| 603 |
-
else: logger.warning("Core LangGraph FAILED import. ReAct fallback. Check requirements & Space build logs.")
|
| 604 |
|
| 605 |
missing_vars_startup_list_global.clear()
|
| 606 |
if not GOOGLE_API_KEY: missing_vars_startup_list_global.append("GOOGLE_API_KEY")
|
|
@@ -608,17 +674,18 @@ if __name__ == "__main__":
|
|
| 608 |
|
| 609 |
try:
|
| 610 |
logger.info("Pre-initializing agent...")
|
| 611 |
-
initialize_agent_and_tools()
|
| 612 |
if AGENT_INSTANCE:
|
| 613 |
agent_type_name = type(AGENT_INSTANCE).__name__
|
| 614 |
agent_pre_init_status_msg_global = f"Agent Pre-initialized: **{agent_type_name}**."
|
| 615 |
-
if LANGGRAPH_FLAVOR_AVAILABLE and "StateGraph" in agent_type_name
|
| 616 |
-
|
|
|
|
| 617 |
else: agent_pre_init_status_msg_global = "Agent pre-init FAILED (AGENT_INSTANCE is None)."
|
| 618 |
logger.info(agent_pre_init_status_msg_global.replace("**",""))
|
| 619 |
except Exception as e:
|
| 620 |
-
agent_pre_init_status_msg_global = f"Agent pre-init CRASHED: {str(e)[:100]}."
|
| 621 |
-
logger.critical(f"Agent pre-init CRASHED: {e}", exc_info=True)
|
| 622 |
|
| 623 |
logger.info(f"Space ID: {os.getenv('SPACE_ID', 'Not Set')}")
|
| 624 |
logger.info("Gradio Interface launching...")
|
|
|
|
| 1 |
+
# Copyright 2025 Jesus Vilela Jato.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# https://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
# --- Imports ---
|
| 16 |
import os
|
| 17 |
import gradio as gr
|
|
|
|
| 26 |
import subprocess # For yt-dlp
|
| 27 |
import io # For BytesIO with PIL
|
| 28 |
|
|
|
|
|
|
|
| 29 |
# --- Global Variables for Startup Status ---
|
| 30 |
missing_vars_startup_list_global = []
|
| 31 |
agent_pre_init_status_msg_global = "Agent status will be determined at startup."
|
|
|
|
| 33 |
# File Processing Libs
|
| 34 |
try: from PyPDF2 import PdfReader; PYPDF2_AVAILABLE = True
|
| 35 |
except ImportError: PYPDF2_AVAILABLE = False; print("WARNING: PyPDF2 not found, PDF tool will be disabled.")
|
| 36 |
+
try: from PIL import Image; import pytesseract; PIL_TESSERACT_AVAILABLE = True
|
| 37 |
except ImportError: PIL_TESSERACT_AVAILABLE = False; print("WARNING: Pillow or Pytesseract not found, OCR tool will be disabled.")
|
| 38 |
try: import whisper; WHISPER_AVAILABLE = True
|
| 39 |
except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")
|
| 40 |
|
| 41 |
+
# Google GenAI (Used by LangChain integration AND direct client)
|
| 42 |
+
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
| 43 |
|
| 44 |
# LangChain
|
| 45 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
|
| 46 |
from langchain.prompts import PromptTemplate
|
| 47 |
from langchain.tools import BaseTool, tool as lc_tool_decorator
|
| 48 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
| 53 |
# LangGraph Conditional Imports
|
| 54 |
if TYPE_CHECKING:
|
| 55 |
from langgraph.graph import StateGraph as StateGraphAliasedForHinting
|
| 56 |
+
from langgraph.prebuilt import ToolNode as ToolExecutorAliasedForHinting # Prefer ToolNode
|
| 57 |
from typing_extensions import TypedDict
|
| 58 |
from langgraph.checkpoint.base import BaseCheckpointSaver
|
| 59 |
|
| 60 |
LANGGRAPH_FLAVOR_AVAILABLE = False
|
| 61 |
LG_StateGraph: Optional[Type[Any]] = None
|
| 62 |
+
LG_ToolExecutor_Class: Optional[Type[Any]] = None # Store the class (ToolNode or ToolExecutor)
|
| 63 |
LG_END: Optional[Any] = None
|
| 64 |
LG_ToolInvocation: Optional[Type[Any]] = None
|
| 65 |
add_messages: Optional[Any] = None
|
|
|
|
| 67 |
|
| 68 |
AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
|
| 69 |
TOOLS: List[BaseTool] = []
|
| 70 |
+
LLM_INSTANCE: Optional[ChatGoogleGenerativeAI] = None
|
| 71 |
LANGGRAPH_MEMORY_SAVER: Optional[Any] = None
|
| 72 |
|
| 73 |
+
# google-genai Client SDK
|
| 74 |
from google import genai as google_genai_sdk
|
| 75 |
+
google_genai_client: Optional[google_genai_sdk.Client] = None
|
|
|
|
| 76 |
|
| 77 |
try:
|
| 78 |
from langgraph.graph import StateGraph, END
|
| 79 |
+
try:
|
| 80 |
+
from langgraph.prebuilt import ToolNode # Common in newer langgraph
|
| 81 |
+
LG_ToolExecutor_Class = ToolNode # Assign ToolNode class
|
| 82 |
+
print("Using langgraph.prebuilt.ToolNode for LangGraph tool execution.")
|
| 83 |
+
except ImportError:
|
| 84 |
+
try:
|
| 85 |
+
from langgraph.prebuilt import ToolExecutor # Original attempt
|
| 86 |
+
LG_ToolExecutor_Class = ToolExecutor
|
| 87 |
+
print("Using langgraph.prebuilt.ToolExecutor (fallback) for LangGraph tool execution.")
|
| 88 |
+
except ImportError as e_lg_exec_inner:
|
| 89 |
+
print(f"Failed to import ToolNode and ToolExecutor from langgraph.prebuilt: {e_lg_exec_inner}")
|
| 90 |
+
LG_ToolExecutor_Class = None
|
| 91 |
+
|
| 92 |
+
if LG_ToolExecutor_Class is not None: # Proceed only if a tool executor class was found
|
| 93 |
+
from langgraph.prebuilt import ToolInvocation as LGToolInvocationActual
|
| 94 |
+
from langgraph.graph.message import add_messages as lg_add_messages
|
| 95 |
+
from langgraph.checkpoint.memory import MemorySaver as LGMemorySaver
|
| 96 |
+
LANGGRAPH_FLAVOR_AVAILABLE = True
|
| 97 |
+
LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = \
|
| 98 |
+
StateGraph, END, LGToolInvocationActual, lg_add_messages, LGMemorySaver
|
| 99 |
+
print("Successfully imported LangGraph components.")
|
| 100 |
+
else:
|
| 101 |
+
# This ensures LANGGRAPH_FLAVOR_AVAILABLE remains False if no executor was found
|
| 102 |
+
LANGGRAPH_FLAVOR_AVAILABLE = False
|
| 103 |
+
LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 5
|
| 104 |
+
print(f"WARNING: No suitable LangGraph tool executor (ToolNode/ToolExecutor) found. LangGraph agent will be disabled.")
|
| 105 |
+
|
| 106 |
+
except ImportError as e: # Catch import error for StateGraph, END itself
|
| 107 |
LANGGRAPH_FLAVOR_AVAILABLE = False
|
| 108 |
+
LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 6
|
| 109 |
+
print(f"WARNING: Core LangGraph components (StateGraph, END) not found or import error: {e}. LangGraph agent will be disabled.")
|
| 110 |
+
|
| 111 |
|
| 112 |
# --- Constants ---
|
| 113 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 114 |
+
GEMINI_MODEL_NAME = "gemini-2.5-pro-preview-05-06"
|
|
|
|
|
|
|
| 115 |
GEMINI_FLASH_MULTIMODAL_MODEL_NAME = "gemini-2.0-flash-exp"
|
|
|
|
| 116 |
SCORING_API_BASE_URL = os.getenv("SCORING_API_URL", DEFAULT_API_URL)
|
| 117 |
MAX_FILE_SIZE_BYTES = 50 * 1024 * 1024
|
| 118 |
LOCAL_FILE_STORE_PATH = "./Data"
|
| 119 |
+
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
|
| 120 |
|
| 121 |
# --- Global State ---
|
| 122 |
WHISPER_MODEL: Optional[Any] = None
|
|
|
|
| 136 |
logger.info("google-genai SDK Client initialized successfully.")
|
| 137 |
except Exception as e:
|
| 138 |
logger.error(f"Failed to initialize google-genai SDK Client: {e}")
|
| 139 |
+
google_genai_client = None
|
| 140 |
else:
|
| 141 |
+
logger.warning("GOOGLE_API_KEY not found. google-genai SDK Client not initialized.")
|
|
|
|
| 142 |
|
| 143 |
+
# --- Helper Functions (Unchanged) ---
|
| 144 |
def _strip_exact_match_answer(text: Any) -> str:
|
| 145 |
+
# ... (Your original _strip_exact_match_answer function)
|
| 146 |
if not isinstance(text, str): text = str(text)
|
| 147 |
text_lower_check = text.lower()
|
| 148 |
if text_lower_check.startswith("final answer:"):
|
|
|
|
| 160 |
return text.strip()
|
| 161 |
|
| 162 |
def _is_full_url(url_string: str) -> bool:
|
| 163 |
+
# ... (Your original _is_full_url function)
|
| 164 |
try: result = urlparse(url_string); return all([result.scheme, result.netloc])
|
| 165 |
except ValueError: return False
|
| 166 |
|
| 167 |
def _is_youtube_url(url: str) -> bool:
|
| 168 |
+
# ... (Your original _is_youtube_url function)
|
| 169 |
parsed_url = urlparse(url)
|
| 170 |
return parsed_url.netloc.lower().endswith(("youtube.com", "youtu.be"))
|
| 171 |
|
| 172 |
def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None) -> str:
|
| 173 |
+
# ... (Your original _download_file function - unchanged) ...
|
| 174 |
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
|
| 175 |
logger.debug(f"Download request: '{file_identifier}', task_id: {task_id_for_file}")
|
| 176 |
original_filename = os.path.basename(urlparse(file_identifier).path) if _is_full_url(file_identifier) else os.path.basename(file_identifier)
|
|
|
|
| 251 |
|
| 252 |
if effective_save_path != tentative_local_path and os.path.exists(effective_save_path) and os.path.getsize(effective_save_path) > 0:
|
| 253 |
logger.info(f"Cached file (CD name): {effective_save_path}"); return effective_save_path
|
| 254 |
+
with open(effective_save_path, "wb") as f_download:
|
| 255 |
+
for chunk in r.iter_content(chunk_size=1024*1024): f_download.write(chunk)
|
| 256 |
logger.info(f"File downloaded to {effective_save_path}"); return effective_save_path
|
| 257 |
except requests.exceptions.HTTPError as e:
|
| 258 |
err_msg = f"HTTP {e.response.status_code} for {file_url_to_try}. Detail: {e.response.text[:100]}"
|
|
|
|
| 260 |
except Exception as e:
|
| 261 |
logger.error(f"Download error for {file_url_to_try}: {e}", exc_info=True); return f"Error: {str(e)[:100]}"
|
| 262 |
|
| 263 |
+
# --- Tool Function Definitions ---
|
| 264 |
READ_PDF_TOOL_DESC = "Reads text content from a PDF file. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."
|
| 265 |
@lc_tool_decorator(description=READ_PDF_TOOL_DESC)
|
| 266 |
def read_pdf_tool(action_input_json_str: str) -> str:
|
|
|
|
| 272 |
path = _download_file(file_id, task_id)
|
| 273 |
if path.startswith("Error:"): return path
|
| 274 |
try:
|
| 275 |
+
text_content = "";
|
| 276 |
+
with open(path, "rb") as f_pdf:
|
| 277 |
+
reader = PdfReader(f_pdf)
|
| 278 |
if reader.is_encrypted:
|
| 279 |
try: reader.decrypt('')
|
| 280 |
except: return f"Error: PDF '{path}' encrypted."
|
| 281 |
for page_num in range(len(reader.pages)):
|
| 282 |
page = reader.pages[page_num]
|
| 283 |
+
text_content += page.extract_text() + "\n\n"
|
| 284 |
+
return text_content[:40000]
|
| 285 |
except Exception as e: return f"Error reading PDF '{path}': {e}"
|
| 286 |
|
|
|
|
| 287 |
OCR_IMAGE_TOOL_DESC = "Extracts text from an image using OCR. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."
|
| 288 |
@lc_tool_decorator(description=OCR_IMAGE_TOOL_DESC)
|
| 289 |
def ocr_image_tool(action_input_json_str: str) -> str:
|
|
|
|
| 314 |
try: result = WHISPER_MODEL.transcribe(path, fp16=False); return result["text"][:40000] # type: ignore
|
| 315 |
except Exception as e: logger.error(f"Whisper error on '{path}': {e}", exc_info=True); return f"Error transcribing '{path}': {e}"
|
| 316 |
|
|
|
|
| 317 |
DIRECT_MULTIMODAL_GEMINI_TOOL_DESC = (
|
| 318 |
"Processes an image file (URL or local path) along with a text prompt using a Gemini multimodal model (gemini-2.0-flash-exp) "
|
| 319 |
+
"for tasks like image description, Q&A about the image, or text generation based on the image. "
|
| 320 |
+
"Input: JSON '{\"file_identifier\": \"IMAGE_FILENAME_OR_URL\", \"text_prompt\": \"Your question or instruction.\", \"task_id\": \"TASK_ID\" (optional)}'. "
|
| 321 |
"Returns the model's text response."
|
| 322 |
)
|
| 323 |
@lc_tool_decorator(description=DIRECT_MULTIMODAL_GEMINI_TOOL_DESC)
|
| 324 |
def direct_multimodal_gemini_tool(action_input_json_str: str) -> str:
|
| 325 |
+
# ... (Implementation from previous response)
|
| 326 |
+
global google_genai_client
|
| 327 |
+
if not google_genai_client: return "Error: google-genai SDK client not initialized."
|
| 328 |
+
if not PIL_TESSERACT_AVAILABLE : return "Error: Pillow (PIL) library not available."
|
|
|
|
|
|
|
| 329 |
try:
|
| 330 |
data = json.loads(action_input_json_str)
|
| 331 |
file_identifier = data.get("file_identifier")
|
| 332 |
+
text_prompt = data.get("text_prompt", "Describe this image.")
|
| 333 |
+
task_id = data.get("task_id")
|
| 334 |
+
if not file_identifier: return "Error: 'file_identifier' for image missing."
|
| 335 |
+
logger.info(f"Direct Multimodal Tool: Image '{file_identifier}', Prompt '{text_prompt}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
local_image_path = _download_file(file_identifier, task_id)
|
| 337 |
+
if local_image_path.startswith("Error:"): return f"Error downloading for Direct MM Tool: {local_image_path}"
|
|
|
|
|
|
|
|
|
|
| 338 |
try:
|
| 339 |
pil_image = Image.open(local_image_path)
|
| 340 |
+
except Exception as e_img_open: return f"Error opening image {local_image_path}: {str(e_img_open)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
response = google_genai_client.models.generate_content(
|
| 342 |
+
model=GEMINI_FLASH_MULTIMODAL_MODEL_NAME, contents=[pil_image, text_prompt]
|
|
|
|
| 343 |
)
|
| 344 |
+
logger.info(f"Direct Multimodal Tool: Response from {GEMINI_FLASH_MULTIMODAL_MODEL_NAME} received.")
|
| 345 |
+
return response.text[:40000]
|
| 346 |
+
except json.JSONDecodeError as e_json_mm: return f"Error parsing JSON for Direct MM Tool: {str(e_json_mm)}. Input: {action_input_json_str}"
|
| 347 |
+
except Exception as e_tool_mm:
|
| 348 |
+
logger.error(f"Error in direct_multimodal_gemini_tool: {e_tool_mm}", exc_info=True)
|
| 349 |
+
return f"Error executing Direct Multimodal Tool: {str(e_tool_mm)}"
|
| 350 |
+
|
| 351 |
+
# --- Agent Prompts (Unchanged) ---
|
| 352 |
+
LANGGRAPH_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
|
| 353 |
+
Your goal is to provide an EXACT MATCH final answer. No conversational text, explanations, or markdown unless explicitly part of the answer.
|
| 354 |
+
TOOLS:
|
| 355 |
+
You have access to the following tools. Use them if necessary.
|
| 356 |
+
{tools}
|
| 357 |
+
TOOL USAGE:
|
| 358 |
+
- To use a tool, your response must include a `tool_calls` attribute in the AIMessage. Each tool call should be a dictionary with "name", "args" (a dictionary of arguments), and "id".
|
| 359 |
+
- For file tools ('read_pdf_tool', 'ocr_image_tool', 'transcribe_audio_tool', 'direct_multimodal_gemini_tool'): `args` must contain 'file_identifier' (filename/URL) and 'task_id' (if GAIA file). For 'direct_multimodal_gemini_tool', also include 'text_prompt'.
|
| 360 |
+
- 'web_search': `args` is like '{{"query": "search query"}}'.
|
| 361 |
+
- 'python_repl': `args` is like '{{"command": "python code string"}}'. Use print() for output.
|
| 362 |
+
RESPONSE FORMAT:
|
| 363 |
+
Final AIMessage should contain ONLY the answer in 'content' and NO 'tool_calls'. If using tools, 'content' can be thought process, with 'tool_calls'.
|
| 364 |
+
Begin!
|
| 365 |
+
Current Task Details (including Task ID and any associated files):
|
| 366 |
+
{input}"""
|
| 367 |
+
|
| 368 |
+
REACT_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
|
| 369 |
+
Goal: EXACT MATCH answer. No extra text/markdown.
|
| 370 |
+
Tools: {tools}
|
| 371 |
+
Process: Question -> Thought -> Action (ONE of [{tool_names}]) -> Action Input -> Observation -> Thought ... -> Final Answer: [exact answer]
|
| 372 |
+
Tool Inputs:
|
| 373 |
+
- web_search: Your search query string.
|
| 374 |
+
- python_repl: Python code string. Use print(). For Excel/CSV, use pandas: import pandas as pd; df = pd.read_excel('./Data/TASKID_filename.xlsx'); print(df.head())
|
| 375 |
+
- read_pdf_tool, ocr_image_tool, transcribe_audio_tool: JSON string like '{{"file_identifier": "FILENAME_OR_URL", "task_id": "CURRENT_TASK_ID_IF_FILENAME"}}'.
|
| 376 |
+
- direct_multimodal_gemini_tool: JSON string like '{{"file_identifier": "IMAGE_FILENAME_OR_URL", "text_prompt": "Your prompt for the image.", "task_id": "TASK_ID_IF_GAIA_FILENAME"}}'.
|
| 377 |
+
If tool fails or info missing, Final Answer: N/A. Do NOT use unlisted tools.
|
| 378 |
+
Begin!
|
| 379 |
+
{input}
|
| 380 |
+
Thought:{agent_scratchpad}"""
|
| 381 |
|
| 382 |
|
|
|
|
|
|
|
|
|
|
| 383 |
# --- Agent Initialization and Response Logic ---
|
| 384 |
def initialize_agent_and_tools(force_reinit=False):
|
| 385 |
+
global AGENT_INSTANCE, TOOLS, LLM_INSTANCE, LANGGRAPH_FLAVOR_AVAILABLE, LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class, LANGGRAPH_MEMORY_SAVER, google_genai_client
|
| 386 |
if AGENT_INSTANCE and not force_reinit: logger.info("Agent already initialized."); return
|
| 387 |
logger.info("Initializing agent and tools...")
|
| 388 |
if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY not set for LangChain LLM.")
|
| 389 |
|
| 390 |
+
# CORRECTED ChatGoogleGenerativeAI initialization
|
| 391 |
+
# The safety_settings should be a dictionary where keys are HarmCategory enums and values are HarmBlockThreshold enums.
|
| 392 |
+
# Or a list of dicts: [{"category": HarmCategory.XYZ, "threshold": HarmBlockThreshold.ABC}, ...]
|
| 393 |
+
# Let's use the dictionary format as it's cleaner and suggested by LangChain's type hints.
|
| 394 |
+
llm_safety_settings_map = {
|
| 395 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
| 396 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
| 397 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
| 398 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
| 399 |
+
}
|
| 400 |
+
# If the above still causes issues due to Pydantic's strict enum key handling,
|
| 401 |
+
# an alternative is to pass it as a list of SafetySetting objects from google.generativeai.types,
|
| 402 |
+
# but ChatGoogleGenerativeAI's Pydantic model might not directly accept that.
|
| 403 |
+
# The most robust way if direct enums as keys fail is to convert enums to their string values for the dict if Pydantic demands.
|
| 404 |
+
# However, LangChain *should* handle the direct enums.
|
| 405 |
+
# The error `Input should be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 [type=enum, input_value=<HarmCategory...>]`
|
| 406 |
+
# suggests that for the *keys* of the safety_settings dict, it might be expecting the integer value of the HarmCategory enum.
|
| 407 |
+
# This is unusual. Let's try with the most standard documented way first (direct enums).
|
| 408 |
+
# If that fails, the next step would be to try string names for keys.
|
| 409 |
+
|
| 410 |
try:
|
| 411 |
+
LLM_INSTANCE = ChatGoogleGenerativeAI(
|
| 412 |
+
model=GEMINI_MODEL_NAME,
|
| 413 |
+
google_api_key=GOOGLE_API_KEY,
|
| 414 |
+
temperature=0.0,
|
| 415 |
+
safety_settings=llm_safety_settings_map, # Pass the map
|
| 416 |
+
timeout=120, # Corrected: 'timeout' not 'request_timeout'
|
| 417 |
+
convert_system_message_to_human=True
|
| 418 |
+
)
|
| 419 |
logger.info(f"LangChain LLM (Planner) initialized: {GEMINI_MODEL_NAME}")
|
| 420 |
+
except Exception as e:
|
| 421 |
+
logger.error(f"LangChain LLM init failed: {e}", exc_info=True)
|
| 422 |
+
raise
|
| 423 |
|
| 424 |
TOOLS = []
|
| 425 |
if PYPDF2_AVAILABLE: TOOLS.append(read_pdf_tool)
|
| 426 |
if PIL_TESSERACT_AVAILABLE: TOOLS.append(ocr_image_tool)
|
| 427 |
if WHISPER_AVAILABLE: TOOLS.append(transcribe_audio_tool)
|
| 428 |
+
if google_genai_client and PIL_TESSERACT_AVAILABLE: TOOLS.append(direct_multimodal_gemini_tool); logger.info("Added 'direct_multimodal_gemini_tool'.")
|
| 429 |
+
else: logger.warning("'direct_multimodal_gemini_tool' NOT added (client or PIL missing).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
try: search_tool = DuckDuckGoSearchRun(name="web_search"); search_tool.description = "Web search. Input: query."; TOOLS.append(search_tool)
|
| 431 |
except Exception as e: logger.warning(f"DuckDuckGoSearchRun init failed: {e}")
|
| 432 |
try: python_repl = PythonREPLTool(name="python_repl"); python_repl.description = "Python REPL. print() for output."; TOOLS.append(python_repl)
|
| 433 |
except Exception as e: logger.warning(f"PythonREPLTool init failed: {e}")
|
| 434 |
logger.info(f"Final tools list for agent: {[t.name for t in TOOLS]}")
|
| 435 |
|
| 436 |
+
if LANGGRAPH_FLAVOR_AVAILABLE and all([LG_StateGraph, LG_ToolExecutor_Class, LG_END, LLM_INSTANCE, LG_ToolInvocation, add_messages]):
|
|
|
|
|
|
|
| 437 |
if not LANGGRAPH_MEMORY_SAVER and MemorySaver_Class: LANGGRAPH_MEMORY_SAVER = MemorySaver_Class(); logger.info("LangGraph MemorySaver initialized.")
|
| 438 |
try:
|
| 439 |
+
logger.info(f"Attempting LangGraph init (Tool Executor type: {LG_ToolExecutor_Class.__name__ if LG_ToolExecutor_Class else 'None'})")
|
| 440 |
_TypedDict = getattr(__import__('typing_extensions'), 'TypedDict', dict)
|
| 441 |
+
class AgentState(_TypedDict): input: str; messages: Annotated[List[Any], add_messages]
|
| 442 |
|
| 443 |
+
prompt_content_lg_init = LANGGRAPH_PROMPT_TEMPLATE_STR.format(
|
| 444 |
+
tools="\n".join([f"- {t.name}: {t.description}" for t in TOOLS]), input="{input}"
|
|
|
|
| 445 |
)
|
| 446 |
def agent_node(state: AgentState):
|
| 447 |
+
current_input = state.get('input', '')
|
| 448 |
+
formatted_system_prompt = prompt_content_lg_init.replace("{input}", current_input)
|
| 449 |
+
messages_for_llm = [SystemMessage(content=formatted_system_prompt)] + state.get('messages', [])
|
| 450 |
+
bound_llm = LLM_INSTANCE.bind_tools(TOOLS) # type: ignore
|
| 451 |
+
response = bound_llm.invoke(messages_for_llm)
|
| 452 |
+
return {"messages": [response]}
|
| 453 |
+
|
| 454 |
+
if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
|
| 455 |
+
# Instantiate ToolNode if that's what was imported
|
| 456 |
+
tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def tool_node(state: AgentState): # This function uses the instantiated tool_executor_instance_lg
|
| 460 |
+
last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
|
| 461 |
+
if not last_msg or not last_msg.tool_calls: return {"messages": []}
|
| 462 |
+
# ToolNode expects a list of ToolInvocations if invoked directly,
|
| 463 |
+
# or handles it if part of a graph that structures it.
|
| 464 |
+
# The LangGraph prebuilt react agent often passes the AIMessage directly to ToolNode.
|
| 465 |
+
# Let's assume the ToolNode can handle a list of tool calls from the AIMessage.
|
| 466 |
+
# If ToolNode expects a single ToolInvocation, this loop needs adjustment.
|
| 467 |
+
# However, the standard ToolNode takes the AIMessage and iterates internally.
|
| 468 |
+
# The issue might be if `tool_executor_instance_lg` is not directly callable or its `invoke` expects different input.
|
| 469 |
+
# For now, let's assume the standard pattern where ToolNode handles the AIMessage's tool_calls.
|
| 470 |
+
# A simpler way to use ToolNode is often just to pass it to add_node if it's a runnable.
|
| 471 |
+
# tool_executor_instance_lg.invoke(last_msg.tool_calls) might be what's needed if it takes raw calls
|
| 472 |
+
|
| 473 |
+
# The following is more aligned if tool_executor_instance_lg is the older ToolExecutor
|
| 474 |
+
# or if ToolNode is used within a manual iteration like this:
|
| 475 |
+
tool_results = []
|
| 476 |
+
for tc in last_msg.tool_calls:
|
| 477 |
+
name, args, tc_id = tc.get('name'), tc.get('args'), tc.get('id')
|
| 478 |
+
if not all([name, isinstance(args, dict), tc_id]):
|
| 479 |
+
# ... error handling ...
|
| 480 |
+
err_msg=f"Invalid tool_call: {tc}"; logger.error(err_msg)
|
| 481 |
+
tool_results.append(ToolMessage(f"Error: {err_msg}", tool_call_id=tc_id or "error_id", name=name or "error_tool"))
|
| 482 |
continue
|
| 483 |
try:
|
| 484 |
+
logger.info(f"LG Tool Invoking: '{name}' with {args} (ID: {tc_id})")
|
| 485 |
+
tool_invocation_obj_lg = LG_ToolInvocation(tool=name, tool_input=args) # type: ignore
|
| 486 |
+
# This invoke is on the tool_executor_instance_lg (which could be ToolNode or older ToolExecutor)
|
| 487 |
+
output_lg = tool_executor_instance_lg.invoke(tool_invocation_obj_lg) # This might be the issue if ToolNode expects direct runnable call
|
| 488 |
+
tool_results.append(ToolMessage(content=str(output_lg), tool_call_id=tc_id, name=name))
|
| 489 |
except Exception as e_tool_node_lg:
|
| 490 |
+
logger.error(f"LG Tool Error ('{name}'): {e_tool_node_lg}", exc_info=True)
|
| 491 |
+
tool_results.append(ToolMessage(content=f"Error for tool {name}: {str(e_tool_node_lg)}", tool_call_id=tc_id, name=name))
|
| 492 |
+
return {"messages": tool_results}
|
| 493 |
+
|
| 494 |
|
| 495 |
workflow_lg = LG_StateGraph(AgentState) # type: ignore
|
| 496 |
workflow_lg.add_node("agent", agent_node)
|
| 497 |
+
# If LG_ToolExecutor_Class is ToolNode, tool_node_instance is runnable
|
| 498 |
+
# workflow_lg.add_node("tools", tool_executor_instance_lg) # Preferred way if ToolNode is a runnable
|
| 499 |
+
workflow_lg.add_node("tools", tool_node) # Keep custom tool_node for now
|
| 500 |
workflow_lg.set_entry_point("agent")
|
| 501 |
def should_continue_lg(state: AgentState): return "tools" if state['messages'][-1].tool_calls else LG_END
|
| 502 |
workflow_lg.add_conditional_edges("agent", should_continue_lg, {"tools": "tools", LG_END: LG_END}) # type: ignore
|
|
|
|
| 525 |
if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
|
| 526 |
logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")
|
| 527 |
|
| 528 |
+
# --- get_agent_response, construct_prompt_for_agent, run_and_submit_all (Unchanged) ---
|
|
|
|
|
|
|
| 529 |
def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
|
| 530 |
+
# ... (Your original get_agent_response logic - unchanged) ...
|
| 531 |
global AGENT_INSTANCE, LLM_INSTANCE
|
| 532 |
thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
|
| 533 |
if not AGENT_INSTANCE or not LLM_INSTANCE:
|
|
|
|
| 543 |
logger.debug(f"Using LangGraph agent (Memory: {LANGGRAPH_MEMORY_SAVER is not None}) for thread: {thread_id_to_use}")
|
| 544 |
initial_messages_lg_get = []
|
| 545 |
input_for_lg_get = {"input": prompt, "messages": initial_messages_lg_get}
|
| 546 |
+
final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}}) # type: ignore
|
| 547 |
if not final_state_lg_get or 'messages' not in final_state_lg_get or not final_state_lg_get['messages']:
|
| 548 |
logger.error("LangGraph: No final state/messages."); return "[ERROR] LangGraph: No final state/messages."
|
| 549 |
for message_item_lg_get in reversed(final_state_lg_get['messages']):
|
|
|
|
| 562 |
return f"[ERROR] Agent execution failed: {str(e_agent_run_get)[:150]}"
|
| 563 |
|
| 564 |
def construct_prompt_for_agent(q: Dict[str,Any]) -> str:
|
| 565 |
+
# ... (Your original construct_prompt_for_agent logic - unchanged) ...
|
| 566 |
tid,q_str=q.get("task_id","N/A"),q.get("question",""); files=q.get("files",[])
|
| 567 |
files_info = ("\nFiles:\n"+"\n".join([f"- {f} (task_id:{tid})"for f in files])) if files else ""
|
| 568 |
level = f"\nLevel:{q.get('level')}" if q.get('level') else ""
|
|
|
|
| 573 |
global AGENT_INSTANCE
|
| 574 |
space_id = os.getenv("SPACE_ID")
|
| 575 |
username_for_submission = None
|
|
|
|
| 576 |
if profile and hasattr(profile, 'username') and profile.username:
|
| 577 |
username_for_submission = profile.username
|
| 578 |
logger.info(f"Username from OAuth profile: {username_for_submission}")
|
| 579 |
else:
|
| 580 |
logger.warning("OAuth profile not available or username missing.")
|
| 581 |
return "Hugging Face login required. Please use the login button and try again.", None
|
|
|
|
| 582 |
if AGENT_INSTANCE is None:
|
| 583 |
try: logger.info("Agent not pre-initialized. Initializing for run..."); initialize_agent_and_tools()
|
| 584 |
except Exception as e: return f"Agent on-demand initialization failed: {e}", None
|
| 585 |
if AGENT_INSTANCE is None: return "Agent is still None after on-demand init.", None
|
|
|
|
| 586 |
agent_code_url_run=f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_dev_run"
|
| 587 |
questions_url_run,submit_url_run=f"{DEFAULT_API_URL}/questions",f"{DEFAULT_API_URL}/submit"
|
| 588 |
auth_headers_run={"Authorization":f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN else {}
|
|
|
|
| 592 |
if not questions_data_run or not isinstance(questions_data_run,list):logger.error(f"Invalid questions data: {questions_data_run}");return "Fetched questions_data invalid.",None
|
| 593 |
logger.info(f"Fetched {len(questions_data_run)} questions.")
|
| 594 |
except Exception as e:logger.error(f"Fetch questions error: {e}",exc_info=True);return f"Fetch questions error:{e}",None
|
|
|
|
| 595 |
results_log_run,answers_payload_run=[],[]
|
| 596 |
logger.info(f"Running agent on {len(questions_data_run)} questions for user '{username_for_submission}'...")
|
| 597 |
for i,item_run in enumerate(questions_data_run):
|
|
|
|
| 607 |
logger.error(f"Agent error task {task_id_run}:{e}",exc_info=True);error_answer_run=f"AGENT ERROR:{str(e)[:100]}"
|
| 608 |
answers_payload_run.append({"task_id":task_id_run,"submitted_answer":"N/A [AGENT_ERROR]"})
|
| 609 |
results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":error_answer_run,"Submitted Answer":"N/A [AGENT_ERROR]"})
|
|
|
|
| 610 |
if not answers_payload_run:return "Agent produced no answers.",pd.DataFrame(results_log_run)
|
| 611 |
submission_payload_run={"username":username_for_submission.strip(),"agent_code":agent_code_url_run,"answers":answers_payload_run}
|
| 612 |
logger.info(f"Submitting {len(answers_payload_run)} answers to {submit_url_run} for user '{username_for_submission}'...")
|
|
|
|
| 619 |
error_http_run=f"HTTP {e.response.status_code}. Detail:{e.response.text[:200]}"; logger.error(f"Submit Fail:{error_http_run}",exc_info=True); return f"Submit Fail:{error_http_run}",pd.DataFrame(results_log_run)
|
| 620 |
except Exception as e:logger.error(f"Submit Fail unexpected:{e}",exc_info=True);return f"Submit Fail:{str(e)[:100]}",pd.DataFrame(results_log_run)
|
| 621 |
|
| 622 |
+
# --- Build Gradio Interface ---
|
|
|
|
| 623 |
with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !important;}",theme=gr.themes.Soft()) as demo:
|
|
|
|
| 624 |
gr.Markdown("# GAIA Agent Challenge Runner v7 (OAuth for Username)")
|
| 625 |
gr.Markdown(f"""**Instructions:**
|
| 626 |
1. **Login with Hugging Face** using the button below. Your HF username will be used for submission.
|
|
|
|
| 635 |
gr.LoginButton()
|
| 636 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 637 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=7, interactive=False)
|
| 638 |
+
results_table = gr.DataFrame(label="Q&A Log", headers=["Task ID","Question","Prompt","Raw","Submitted"], wrap=True) # Removed height
|
| 639 |
|
| 640 |
run_button.click(fn=run_and_submit_all, outputs=[status_output,results_table], api_name="run_evaluation")
|
| 641 |
|
| 642 |
def update_ui_on_load_fn_within_context():
|
|
|
|
| 643 |
global missing_vars_startup_list_global, agent_pre_init_status_msg_global
|
| 644 |
secrets_msg_md = ""
|
| 645 |
if missing_vars_startup_list_global:
|
|
|
|
| 652 |
if env_issues: secrets_msg_md += f"<br/><font color='orange'>**Tool Deps Missing:** {', '.join(env_issues)}.</font>"
|
| 653 |
current_status_md = agent_pre_init_status_msg_global
|
| 654 |
if not LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
|
| 655 |
+
current_status_md += f" (LangGraph core components not fully loaded: LG_ToolExecutor_Class is {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'None'}, ReAct fallback.)"
|
| 656 |
+
elif LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
|
| 657 |
+
current_status_md += f" (LangGraph ready with {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'UnknownExecutor'}.)"
|
| 658 |
return { agent_status_display: gr.Markdown(value=current_status_md),
|
| 659 |
missing_secrets_display: gr.Markdown(value=secrets_msg_md) }
|
| 660 |
|
| 661 |
demo.load(update_ui_on_load_fn_within_context, [], [agent_status_display, missing_secrets_display])
|
| 662 |
|
| 663 |
if __name__ == "__main__":
|
| 664 |
+
logger.info(f"Application starting up (v7 with Pydantic & LangGraph fixes)...") # Updated version in log
|
|
|
|
| 665 |
if not PYPDF2_AVAILABLE: logger.warning("PyPDF2 (PDF tool) NOT AVAILABLE.")
|
| 666 |
+
if not PIL_TESSERACT_AVAILABLE: logger.warning("Pillow/Pytesseract (OCR tool) NOT AVAILABLE.")
|
| 667 |
if not WHISPER_AVAILABLE: logger.warning("Whisper (Audio tool) NOT AVAILABLE.")
|
| 668 |
+
if LANGGRAPH_FLAVOR_AVAILABLE: logger.info(f"Core LangGraph components (StateGraph, END, {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'FailedExecutor'}) loaded.")
|
| 669 |
+
else: logger.warning("Core LangGraph FAILED import or essential component (ToolExecutor/Node) missing. ReAct fallback. Check requirements & Space build logs.")
|
| 670 |
|
| 671 |
missing_vars_startup_list_global.clear()
|
| 672 |
if not GOOGLE_API_KEY: missing_vars_startup_list_global.append("GOOGLE_API_KEY")
|
|
|
|
| 674 |
|
| 675 |
try:
|
| 676 |
logger.info("Pre-initializing agent...")
|
| 677 |
+
initialize_agent_and_tools()
|
| 678 |
if AGENT_INSTANCE:
|
| 679 |
agent_type_name = type(AGENT_INSTANCE).__name__
|
| 680 |
agent_pre_init_status_msg_global = f"Agent Pre-initialized: **{agent_type_name}**."
|
| 681 |
+
if LANGGRAPH_FLAVOR_AVAILABLE and ("StateGraph" in agent_type_name or "CompiledGraph" in agent_type_name) :
|
| 682 |
+
lg_executor_display_name = type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else "UnknownExecutor"
|
| 683 |
+
agent_pre_init_status_msg_global = f"Agent Pre-initialized: **LangGraph** (Executor: {lg_executor_display_name}, Memory: {LANGGRAPH_MEMORY_SAVER is not None})."
|
| 684 |
else: agent_pre_init_status_msg_global = "Agent pre-init FAILED (AGENT_INSTANCE is None)."
|
| 685 |
logger.info(agent_pre_init_status_msg_global.replace("**",""))
|
| 686 |
except Exception as e:
|
| 687 |
+
agent_pre_init_status_msg_global = f"Agent pre-init CRASHED: {str(e)[:100]}." # Show first 100 chars of error
|
| 688 |
+
logger.critical(f"Agent pre-init CRASHED: {e}", exc_info=True) # Full traceback to logs
|
| 689 |
|
| 690 |
logger.info(f"Space ID: {os.getenv('SPACE_ID', 'Not Set')}")
|
| 691 |
logger.info("Gradio Interface launching...")
|