import os import math import argparse import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( PreTrainedTokenizerBase, DataCollatorForSeq2Seq, ) from model import load_model_for_inference from dataset import DatasetReader, count_lines from accelerate import Accelerator, DistributedType, find_executable_batch_size def encode_string(text): return text.replace("\r", r"\r").replace("\n", r"\n").replace("\t", r"\t") def get_dataloader( accelerator: Accelerator, filename: str, tokenizer: PreTrainedTokenizerBase, batch_size: int, max_length: int, prompt: str, ) -> DataLoader: dataset = DatasetReader(filename, tokenizer, max_length, prompt) if accelerator.distributed_type == DistributedType.TPU: data_collator = DataCollatorForSeq2Seq( tokenizer, padding="max_length", max_length=max_length, label_pad_token_id=tokenizer.pad_token_id, return_tensors="pt", ) else: data_collator = DataCollatorForSeq2Seq( tokenizer, padding=True, label_pad_token_id=tokenizer.pad_token_id, # max_length=max_length, No need to set max_length here, we already truncate in the preprocess function pad_to_multiple_of=8, return_tensors="pt", ) return DataLoader( dataset, batch_size=batch_size, collate_fn=data_collator, num_workers=0, # Disable multiprocessing ) def main( sentences_path: str, output_path: str, source_lang: str, target_lang: str, starting_batch_size: int, model_name: str = "facebook/m2m100_1.2B", lora_weights_name_or_path: str = None, force_auto_device_map: bool = False, precision: str = None, max_length: int = 128, num_beams: int = 4, num_return_sequences: int = 1, do_sample: bool = False, temperature: float = 1.0, top_k: int = 50, top_p: float = 1.0, keep_special_tokens: bool = False, keep_tokenization_spaces: bool = False, repetition_penalty: float = None, prompt: str = None, ): os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True) accelerator = Accelerator() if force_auto_device_map and starting_batch_size >= 64: print( f"WARNING: You are using a very large batch size ({starting_batch_size}) and the auto_device_map flag. " f"auto_device_map will offload model parameters to the CPU when they don't fit on the GPU VRAM. " f"If you use a very large batch size, it will offload a lot of parameters to the CPU and slow down the " f"inference. You should consider using a smaller batch size, i.e '--starting_batch_size 8'" ) if precision is None: quantization = None dtype = None elif precision == "8" or precision == "4": quantization = int(precision) dtype = None elif precision == "fp16": quantization = None dtype = "float16" elif precision == "bf16": quantization = None dtype = "bfloat16" elif precision == "32": quantization = None dtype = "float32" else: raise ValueError( f"Precision {precision} not supported. Please choose between 8, 4, fp16, bf16, 32 or None." ) model, tokenizer = load_model_for_inference( weights_path=model_name, quantization=quantization, lora_weights_name_or_path=lora_weights_name_or_path, torch_dtype=dtype, force_auto_device_map=force_auto_device_map, ) is_translation_model = hasattr(tokenizer, "lang_code_to_id") if is_translation_model and (source_lang is None or target_lang is None): raise ValueError( f"The model you are using requires a source and target language. " f"Please specify them with --source-lang and --target-lang. " f"The supported languages are: {tokenizer.lang_code_to_id.keys()}" ) if not is_translation_model and ( source_lang is not None or target_lang is not None ): if prompt is None: print( "WARNING: You are using a model that does not support source and target languages parameters " "but you specified them. You probably want to use m2m100/nllb200 for translation or " "set --prompt to define the task for you model. " ) else: print( "WARNING: You are using a model that does not support source and target languages parameters " "but you specified them." ) if prompt is not None and "%%SENTENCE%%" not in prompt: raise ValueError( f"The prompt must contain the %%SENTENCE%% token to indicate where the sentence should be inserted. " f"Your prompt: {prompt}" ) if is_translation_model: try: _ = tokenizer.lang_code_to_id[source_lang] except KeyError: raise KeyError( f"Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}" ) tokenizer.src_lang = source_lang try: lang_code_to_idx = tokenizer.lang_code_to_id[target_lang] except KeyError: raise KeyError( f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}" ) if "small100" in model_name: tokenizer.tgt_lang = target_lang # We don't need to force the BOS token, so we set is_translation_model to False is_translation_model = False gen_kwargs = { "max_length": max_length, "num_beams": num_beams, "num_return_sequences": num_return_sequences, "do_sample": do_sample, "temperature": temperature, "top_k": top_k, "top_p": top_p, } if repetition_penalty is not None: gen_kwargs["repetition_penalty"] = repetition_penalty total_lines: int = count_lines(sentences_path) if accelerator.is_main_process: print( f"** Translation **\n" f"Input file: {sentences_path}\n" f"Output file: {output_path}\n" f"Source language: {source_lang}\n" f"Target language: {target_lang}\n" f"Force target lang as BOS token: {is_translation_model}\n" f"Prompt: {prompt}\n" f"Starting batch size: {starting_batch_size}\n" f"Device: {str(accelerator.device).split(':')[0]}\n" f"Num. Devices: {accelerator.num_processes}\n" f"Distributed_type: {accelerator.distributed_type}\n" f"Max length: {max_length}\n" f"Quantization: {quantization}\n" f"Precision: {dtype}\n" f"Model: {model_name}\n" f"LoRA weights: {lora_weights_name_or_path}\n" f"Force auto device map: {force_auto_device_map}\n" f"Keep special tokens: {keep_special_tokens}\n" f"Keep tokenization spaces: {keep_tokenization_spaces}\n" ) print("** Generation parameters **") print("\n".join(f"{k}: {v}" for k, v in gen_kwargs.items())) print("\n") @find_executable_batch_size(starting_batch_size=starting_batch_size) def inference(batch_size): nonlocal model, tokenizer, sentences_path, max_length, output_path, lang_code_to_idx, gen_kwargs, precision, prompt, is_translation_model print(f"Translating with batch size {batch_size}") data_loader = get_dataloader( accelerator=accelerator, filename=sentences_path, tokenizer=tokenizer, batch_size=batch_size, max_length=max_length, prompt=prompt, ) model, data_loader = accelerator.prepare(model, data_loader) samples_seen: int = 0 with tqdm( total=total_lines, desc="Dataset translation", leave=True, ascii=True, disable=(not accelerator.is_main_process), ) as pbar, open(output_path, "w", encoding="utf-8") as output_file: with torch.no_grad(): for step, batch in enumerate(data_loader): batch["input_ids"] = batch["input_ids"] batch["attention_mask"] = batch["attention_mask"] generated_tokens = accelerator.unwrap_model(model).generate( **batch, forced_bos_token_id=lang_code_to_idx if is_translation_model else None, **gen_kwargs, ) generated_tokens = accelerator.pad_across_processes( generated_tokens, dim=1, pad_index=tokenizer.pad_token_id ) generated_tokens = ( accelerator.gather(generated_tokens).cpu().numpy() ) tgt_text = tokenizer.batch_decode( generated_tokens, skip_special_tokens=not keep_special_tokens, clean_up_tokenization_spaces=not keep_tokenization_spaces, ) if accelerator.is_main_process: if ( step == math.ceil( math.ceil(total_lines / batch_size) / accelerator.num_processes ) - 1 ): tgt_text = tgt_text[ : (total_lines * num_return_sequences) - samples_seen ] else: samples_seen += len(tgt_text) print( "\n".join( [encode_string(sentence) for sentence in tgt_text] ), file=output_file, ) pbar.update(len(tgt_text) // gen_kwargs["num_return_sequences"]) inference() print(f"Translation done.\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the translation experiments") parser.add_argument( "--sentences_path", type=str, required=True, help="Path to a txt file containing the sentences to translate. One sentence per line.", ) parser.add_argument( "--output_path", type=str, required=True, help="Path to a txt file where the translated sentences will be written.", ) parser.add_argument( "--source_lang", type=str, default=None, required=False, help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200", ) parser.add_argument( "--target_lang", type=str, default=None, required=False, help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200", ) parser.add_argument( "--starting_batch_size", type=int, default=128, help="Starting batch size, we will automatically reduce it if we find an OOM error." "If you use multiple devices, we will divide this number by the number of devices.", ) parser.add_argument( "--model_name", type=str, default="facebook/m2m100_1.2B", help="Path to the model to use. See: https://huggingface.co/models", ) parser.add_argument( "--lora_weights_name_or_path", type=str, default=None, help="If the model uses LoRA weights, path to those weights. See: https://github.com/huggingface/peft", ) parser.add_argument( "--force_auto_device_map", action="store_true", help=" Whether to force the use of the auto device map. If set to True, " "the model will be split across GPUs and CPU to fit the model in memory. " "If set to False, a full copy of the model will be loaded into each GPU. Defaults to False.", ) parser.add_argument( "--max_length", type=int, default=128, help="Maximum number of tokens in the source sentence and generated sentence. " "Increase this value to translate longer sentences, at the cost of increasing memory usage.", ) parser.add_argument( "--num_beams", type=int, default=5, help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory", ) parser.add_argument( "--num_return_sequences", type=int, default=1, help="Number of possible translation to return for each sentence (num_return_sequences<=num_beams).", ) parser.add_argument( "--precision", type=str, default=None, choices=["bf16", "fp16", "32", "4", "8"], help="Precision of the model. bf16, fp16 or 32, 8 , 4 " "(4bits/8bits quantification, requires bitsandbytes library: https://github.com/TimDettmers/bitsandbytes). " "If None, we will use the torch.dtype of the model weights.", ) parser.add_argument( "--do_sample", action="store_true", help="Use sampling instead of beam search.", ) parser.add_argument( "--temperature", type=float, default=0.8, help="Temperature for sampling, value used only if do_sample is True.", ) parser.add_argument( "--top_k", type=int, default=100, help="If do_sample is True, will sample from the top k most likely tokens.", ) parser.add_argument( "--top_p", type=float, default=0.75, help="If do_sample is True, will sample from the top k most likely tokens.", ) parser.add_argument( "--keep_special_tokens", action="store_true", help="Keep special tokens in the decoded text.", ) parser.add_argument( "--keep_tokenization_spaces", action="store_true", help="Do not clean spaces in the decoded text.", ) parser.add_argument( "--repetition_penalty", type=float, default=None, help="Repetition penalty.", ) parser.add_argument( "--prompt", type=str, default=None, help="Prompt to use for generation. " "It must include the special token %%SENTENCE%% which will be replaced by the sentence to translate.", ) args = parser.parse_args() main( sentences_path=args.sentences_path, output_path=args.output_path, source_lang=args.source_lang, target_lang=args.target_lang, starting_batch_size=args.starting_batch_size, model_name=args.model_name, max_length=args.max_length, num_beams=args.num_beams, num_return_sequences=args.num_return_sequences, precision=args.precision, do_sample=args.do_sample, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, keep_special_tokens=args.keep_special_tokens, keep_tokenization_spaces=args.keep_tokenization_spaces, repetition_penalty=args.repetition_penalty, prompt=args.prompt, )