from transformers import ( AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, BitsAndBytesConfig, PreTrainedModel, PreTrainedTokenizerBase, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, ) from typing import Optional, Tuple import os import torch import json def load_model_for_inference( weights_path: str, quantization: Optional[int] = None, lora_weights_name_or_path: Optional[str] = None, torch_dtype: Optional[str] = None, force_auto_device_map: bool = False, ) -> Tuple[PreTrainedModel, PreTrainedTokenizerBase]: """ Load any Decoder model for inference. Args: weights_path (`str`): The path to your local model weights and tokenizer. You can also provide a huggingface hub model name. quantization (`int`, optional): '4' or '8' for 4 bits or 8 bits quantization or None for 16/32bits training. Defaults to `None`. Requires bitsandbytes library: https://github.com/TimDettmers/bitsandbytes lora_weights_name_or_path (`Optional[str]`, optional): If the model has been trained with LoRA, path or huggingface hub name to the pretrained weights. Defaults to `None`. torch_dtype (`Optional[str]`, optional): The torch dtype to use for the model. If set to `"auto"`, the dtype will be automatically derived. Defaults to `None`. If quantization is enabled, we will override this to 'torch.bfloat16'. force_auto_device_map (`bool`, optional): Whether to force the use of the auto device map. If set to True, the model will be split across GPUs and CPU to fit the model in memory. If set to False, a full copy of the model will be loaded into each GPU. Defaults to False. Returns: `Tuple[PreTrainedModel, PreTrainedTokenizerBase]`: The loaded model and tokenizer. """ if type(quantization) == str: quantization = int(quantization) assert (quantization is None) or ( quantization in [4, 8] ), f"Quantization must be 4 or 8, or None for FP32/FP16 training. You passed: {quantization}" print(f"Loading model from {weights_path}") MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.update( { "mpt": "MPTForCausalLM", "RefinedWebModel": "RWForCausalLM", "RefinedWeb": "RWForCausalLM", } ) # MPT and Falcon are not in transformers yet config = AutoConfig.from_pretrained( weights_path, trust_remote_code=True if ("mpt" in weights_path or "falcon" in weights_path) else False, ) torch_dtype = ( torch_dtype if torch_dtype in ["auto", None] else getattr(torch, torch_dtype) ) if "small100" in weights_path: print(f"Loading custom small100 tokenizer for utils.tokenization_small100") from utils.tokenization_small100 import SMALL100Tokenizer as AutoTokenizer else: from transformers import AutoTokenizer tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained( weights_path, add_eos_token=True, trust_remote_code=True if ("mpt" in weights_path or "falcon" in weights_path) else False, ) quant_args = {} if quantization is not None: quant_args = ( {"load_in_4bit": True} if quantization == 4 else {"load_in_8bit": True} ) if quantization == 4: bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) torch_dtype = torch.bfloat16 else: bnb_config = BitsAndBytesConfig( load_in_8bit=True, ) print( f"Bits and Bytes config: {json.dumps(bnb_config.to_dict(),indent=4,ensure_ascii=False)}" ) else: print(f"Loading model with dtype: {torch_dtype}") bnb_config = None if config.model_type in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES: print( f"Model {weights_path} is a encoder-decoder model. We will load it as a Seq2SeqLM model." ) model: PreTrainedModel = AutoModelForSeq2SeqLM.from_pretrained( pretrained_model_name_or_path=weights_path, device_map="auto" if force_auto_device_map else None, torch_dtype=torch_dtype, quantization_config=bnb_config, **quant_args, ) elif config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES: print( f"Model {weights_path} is an encoder-only model. We will load it as a CausalLM model." ) model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path=weights_path, device_map="auto" if force_auto_device_map else None, torch_dtype=torch_dtype, trust_remote_code=True if ("mpt" in weights_path or "falcon" in weights_path) else False, quantization_config=bnb_config, **quant_args, ) # Ensure that the padding token is added to the left of the input sequence. tokenizer.padding_side = "left" else: raise ValueError( f"Model {weights_path} of type {config.model_type} is not supported by EasyTranslate." "Supported models are:\n" f"Seq2SeqLM: {MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES}\n" f"CausalLM: {MODEL_FOR_CAUSAL_LM_MAPPING_NAMES}\n" ) if tokenizer.pad_token_id is None: if "<|padding|>" in tokenizer.get_vocab(): # StableLM specific fix tokenizer.add_special_tokens({"pad_token": "<|padding|>"}) elif tokenizer.unk_token is not None: print( "Model does not have a pad token, we will use the unk token as pad token." ) tokenizer.pad_token_id = tokenizer.unk_token_id else: print( "Model does not have a pad token. We will use the eos token as pad token." ) tokenizer.pad_token_id = tokenizer.eos_token_id if lora_weights_name_or_path: from peft import PeftModel print(f"Loading pretrained LORA weights from {lora_weights_name_or_path}") model = PeftModel.from_pretrained(model, lora_weights_name_or_path) if quantization is None: # If we are not using quantization, we merge the LoRA layers into the model for faster inference. # This is not possible if we are using 4/8 bit quantization. model = model.merge_and_unload() return model, tokenizer