# AUTOGENERATED! DO NOT EDIT! File to edit: os_identify.ipynb. # %% auto 0 __all__ = ['path', 'learn_inf', 'title', 'description', 'article', 'examples', 'interpretation', 'enable_queue', 'labels', 'predict'] # %% os_identify.ipynb 4 from fastai.vision.all import * # from fastai.vision.widgets import * import gradio as gr # %% os_identify.ipynb 6 # btn_upload = widgets.FileUpload() # btn_run = widgets.Button(description='Classify') # btn_run.on_click(on_click_classify) # %% os_identify.ipynb 7 # load the model path = Path() learn_inf = load_learner(path/'os_model.pkl') # %% os_identify.ipynb 8 # out_pl = widgets.Output() # out_pl.clear_output() # lbl_pred = widgets.Label() # %% os_identify.ipynb 9 # VBox([widgets.Label('Select your screencap!'), # btn_upload, btn_run, out_pl, lbl_pred]) # %% os_identify.ipynb 10 title = "Operating System Screencap Classifier" description = "A classifier trained on various operating system screenshots. For better results, use screenshots that clearly show unique UI elements. For best results, help me better a better dataset." article="
article goes here
" examples=['win95.jpg'] interpretation="default" enable_queue=True # %% os_identify.ipynb 11 labels = learn_inf.dls.vocab def predict(img): # img = PILImage.create(img) pred,pred_idx,probs = learn_inf.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch(share=True) # gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)