import gradio as gr from llama_cpp import Llama print("Downloading model") llm = Llama.from_pretrained( repo_id="bartowski/gemma-2-2b-it-abliterated-GGUF", filename="gemma-2-2b-it-abliterated-IQ4_XS.gguf", numa=True, n_ctx=4096, ) def respond(prompt: str): stream = llm.create_chat_completion(stream=True, messages=[{"role": "user", "content": prompt}]) response = "" for chunk in stream: if "content" in chunk["choices"][0]["delta"]: response += chunk["choices"][0]["delta"]["content"] yield response demo = gr.Interface(fn=respond, inputs=[gr.TextArea("What is the capital of France?")], outputs=[gr.TextArea()]) demo.launch(server_name="0.0.0.0", server_port=7860)