import math import operator as op import itertools as it import functools as ft import collections as cl from pathlib import Path from dataclasses import fields, asdict import pandas as pd import gradio as gr import seaborn as sns import matplotlib.pyplot as plt from datasets import load_dataset from scipy.special import expit from hdinterval import HDI, HDInterval TabGroup = cl.namedtuple('TabGroup', 'name, docs, dataset') # # # def load(repo): parameter = 'parameter' model = 'model' items = [ 'chain', 'sample', parameter, model, 'value', ] dataset = load_dataset(str(repo)) return (dataset .get('train') .to_pandas() .rename(columns={'element': model}) .filter(items=items) .query(f'{parameter} == "alpha"') .drop(columns=parameter)) def summarize(df, ci=0.95): def _aggregate(i, g): values = g['value'] hdi = HDInterval(values) interval = hdi(ci) agg = { 'model': i, 'ability': values.median(), 'uncertainty': interval.width(), } agg.update(asdict(interval)) return agg groups = df.groupby('model', sort=False) records = it.starmap(_aggregate, groups) return pd.DataFrame.from_records(records) def rank(df, ascending, name='rank'): df = (df .sort_values(by=['ability', 'uncertainty'], ascending=[ascending, not ascending]) .drop(columns='uncertainty') .reset_index(drop=True)) df.index += 1 return df.reset_index(names=name) def compare(df, model_1, model_2): mcol = 'model' models = [ model_1, model_2, ] view = (df .query(f'{mcol} in @models') .pivot(index=['chain', 'sample'], columns=mcol, values='value')) return expit(view[model_1] - view[model_2]) # # # class DataPlotter: def __init__(self, df): self.df = df def plot(self): fig = plt.figure(dpi=200) ax = fig.gca() self.draw(ax) ax.grid(visible=True, axis='both', alpha=0.25, linestyle='dotted') fig.tight_layout() return fig def draw(self, ax): raise NotImplementedError() class RankPlotter(DataPlotter): _y = 'y' @ft.cached_property def y(self): return self.df[self._y] def __init__(self, df, top=10): view = rank(summarize(df), True, self._y) view = (view .tail(top) .sort_values(by=self._y, ascending=False)) super().__init__(view) def draw(self, ax): self.df.plot.scatter('ability', self._y, ax=ax) ax.hlines(self.y, xmin=self.df['lower'], xmax=self.df['upper'], alpha=0.5) ax.set_xlabel(ax.get_xlabel().title()) ax.set_ylabel('') ax.set_yticks(self.y, self.df['model']) class ComparisonPlotter(DataPlotter): def __init__(self, df, model_1, model_2, ci): super().__init__(compare(df, model_1, model_2)) self.hdi = HDInterval(self.df) self.ci = ci def draw(self, ax): interval = self.hdi(self.ci) sns.ecdfplot(self.df, ax=ax) (_, color, *_) = sns.color_palette() ax.axvline(x=self.df.median(), color=color, linestyle='dashed') ax.axvspan(xmin=interval.lower, xmax=interval.upper, alpha=0.15, color=color) ax.set_xlabel('Pr(M$_{1}$ \u003E M$_{2}$)') try: ci_mid = self.hdi.at(0.5) ax.text(x=0.01, y=0.99, s=f'0.5-min HDI: {ci_mid:.0%}', horizontalalignment='left', verticalalignment='top', transform=ax.transAxes) except ArithmeticError: pass class ComparisonMenu: def __init__(self, df, ci=0.95): self.df = df self.ci = ci def __call__(self, model_1, model_2, ci): cp = ComparisonPlotter(self.df, model_1, model_2, ci) return cp.plot() def build_and_get(self): models = self.df['model'].unique() choices = sorted(models, key=lambda x: x.lower()) for i in range(1, 3): label = f'Model {i}' yield gr.Dropdown(label=label, choices=choices) yield gr.Number(value=self.ci, label='HDI', minimum=0, maximum=1, step=1e-2) # # # class DocumentationReader: _suffix = '.md' def __init__(self, root): self.root = root def __getitem__(self, item): return (self .root .joinpath(item) .with_suffix(self._suffix) .read_text()) # # # def layout(tab): df = load(Path('jerome-white', tab.dataset)) docs = DocumentationReader(Path('docs', t.docs)) with gr.Row(): with gr.Column(): gr.Markdown(docs['readme']) with gr.Column(): plotter = RankPlotter(df) gr.Plot(plotter.plot()) with gr.Row(): view = rank(summarize(df), False) columns = { x.name: f'HDI {x.name}' for x in fields(HDI) } for i in view.columns: columns.setdefault(i, i.title()) view = (view .rename(columns=columns) .style.format(precision=4)) gr.Dataframe(view) with gr.Row(): with gr.Column(scale=3): display = gr.Plot() with gr.Row(): with gr.Column(): gr.Markdown(''' Probability that Model 1 is preferred to Model 2. The solid blue curve is a CDF of that distribution; formally the inverse logit of the difference in model abilities. The dashed orange vertical line is the median, while the band surrounding it is the [highest density interval](https://cran.r-project.org/package=HDInterval) of your choice (default 95%). ''') with gr.Column(): menu = ComparisonMenu(df) inputs = list(menu.build_and_get()) button = gr.Button(value='Compare!') button.click(menu, inputs=inputs, outputs=[display]) with gr.Accordion('Disclaimer', open=False): gr.Markdown(docs['disclaimer']) # # # with gr.Blocks() as demo: tabs = it.starmap(TabGroup, ( ('Alpaca', 'alpaca', 'alpaca-bt-stan'), ('Chatbot Arena', 'arena', 'arena-bt-stan'), )) for t in tabs: with gr.Tab(t.name): layout(t) demo.launch()