import torch from typing import Tuple from torchvision.ops._utils import _upcast_non_float def distance_box_iou_loss_3d( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "mean", eps: float = 1e-7, return_iou: bool = False, ) -> torch.Tensor: """Gradient-friendly IoU loss with an additional penalty that is non-zero when the distance between boxes' centers isn't zero. Indeed, for two exactly overlapping boxes, the distance IoU is the same as the IoU loss. This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable. Both sets of boxes are expected to be in ``(x1, y1, z1, x2, y2, z2)`` format with ``0 <= x1 < x2``, ``0 <= y1 < y2`` and ``0 <= z1 < z2`` and The two boxes should have the same dimensions. range: [0, 1 + normalized_center_distance_squared] Args: boxes1 (Tensor[N, 6]): first set of boxes boxes2 (Tensor[N, 6]): second set of boxes reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'mean'`` eps (float, optional): small number to prevent division by zero. Default: 1e-7 return_iou (bool, optional): If True, also return the IoU loss. Default: False Returns: Tensor: Loss tensor with the reduction option applied. Reference: Zhaohui Zheng et al.: Distance Intersection over Union Loss: https://arxiv.org/abs/1911.08287 and https://pytorch.org/vision/main/_modules/torchvision/ops/diou_loss.html#distance_box_iou_loss """ boxes1 = _upcast_non_float(boxes1) boxes2 = _upcast_non_float(boxes2) loss, iou = _diou_iou_loss_3d(boxes1, boxes2, eps) # Check reduction option and return loss accordingly if reduction == "none": pass elif reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() iou = iou.mean() if iou.numel() > 0 else 0.0 * iou.sum() elif reduction == "sum": loss = loss.sum() iou = iou.sum() else: raise ValueError( f"Invalid Value for arg 'reduction': '{reduction} \n Supported reduction modes: 'none', 'mean', 'sum'" ) if return_iou: return loss, iou else: return loss def _diou_iou_loss_3d( boxes1: torch.Tensor, boxes2: torch.Tensor, eps: float = 1e-7, ) -> Tuple[torch.Tensor, torch.Tensor]: intsct, union = _loss_inter_union_3d(boxes1, boxes2) iou = intsct / (union + eps) # Smallest enclosing box x1, y1, z1, x2, y2, z2 = boxes1.unbind(dim=-1) x1g, y1g, z1g, x2g, y2g, z2g = boxes2.unbind(dim=-1) xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) zc1 = torch.min(z1, z1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) zc2 = torch.max(z2, z2g) # Diagonal distance of the smallest enclosing box squared diagonal_distance_squared = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + ((zc2 - zc1) ** 2) + eps # Centers of boxes x_c = (x2 + x1) / 2 y_c = (y2 + y1) / 2 z_c = (z2 + z1) / 2 x_cg = (x2g + x1g) / 2 y_cg = (y2g + y1g) / 2 z_cg = (z2g + z1g) / 2 # Distance between boxes' centers squared centers_distance_squared = ((x_c - x_cg) ** 2) + ((y_c - y_cg) ** 2) + ((z_c - z_cg) ** 2) # The distance IoU is the IoU penalized by a normalized # distance between boxes' centers squared. loss = 1 - iou + (centers_distance_squared / diagonal_distance_squared) return loss, iou def _loss_inter_union_3d( boxes1: torch.Tensor, boxes2: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: x1, y1, z1, x2, y2, z2 = boxes1.unbind(dim=-1) x1g, y1g, z1g, x2g, y2g, z2g = boxes2.unbind(dim=-1) # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) zkis1 = torch.max(z1, z1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) zkis2 = torch.min(z2, z2g) intsctk = torch.zeros_like(x1) mask = (xkis2 > xkis1) & (ykis2 > ykis1) & (zkis2 > zkis1) intsctk[mask] = ( (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) * (zkis2[mask] - zkis1[mask]) ) unionk = (x2 - x1) * (y2 - y1) * (z2 - z1) + (x2g - x1g) * (y2g - y1g) * (z2g - z1g) - intsctk return intsctk, unionk if __name__ == "__main__": # Example usage boxes1 = torch.tensor([[0.2715, 0.3398, 0.2793, 0.4160, 0.4121, 0.7070]], dtype=torch.float32) boxes2 = torch.tensor([[0.2402, 0.2246, -0.1689, 0.7422, 0.7109, 0.7734]], dtype=torch.float32) loss = distance_box_iou_loss_3d(boxes1, boxes2) print(loss) # Output: tensor(0.0000) # The boxes are exactly overlapping, so the distance IoU is the same as the IoU loss. # The distance between boxes' centers is zero, so the distance IoU loss is zero. # The output is a tensor(0.0000) as expected. # The distance IoU loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable.