import whisper import datetime import gradio as gr import pandas as pd import time import os import numpy as np from sklearn.cluster import AgglomerativeClustering import torch from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding from pyannote.audio import Audio, Pipeline from pyannote.core import Segment from gpuinfo import GPUInfo from util import * import wave import contextlib from transformers import pipeline import psutil source_language_list = [key[0] for key in source_languages.items()] MODEL_NAME = "openai/whisper-base.en" lang = "en" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") embedding_model = PretrainedSpeakerEmbedding( "speechbrain/spkrec-ecapa-voxceleb", device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1", use_auth_token="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") def transcribe(microphone, file_upload): print("Beginning transcribe...") warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text def convert_time(secs): return datetime.timedelta(seconds=round(secs)) def speech_to_text(audio_file_path, selected_source_lang, whisper_model, num_speakers, output_types=['csv','docx','md']): """ # Transcribe youtube link using OpenAI Whisper 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. 2. Generating speaker embeddings for each segments. 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio """ print("Loading model...") torch.cuda.empty_cache() model = whisper.load_model(whisper_model) time_start = time.time() try: upload_name = audio_file_path.orig_name file_name = audio_file_path.name except: upload_name = "output.mp3" file_name = audio_file_path if(audio_file_path == None): raise ValueError("Error no video input") try: _,file_ending = os.path.splitext(f'{file_name}') print(f'file ending is {file_ending}') audio_file = file_name.replace(file_ending, ".wav") print("starting conversion to wav") os.system(f'ffmpeg -y -i "{file_name}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') # Get duration with contextlib.closing(wave.open(audio_file,'r')) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) print(f"conversion to wav ready, duration of audio file: {duration}") # Transcribe audio options = dict(language=selected_source_lang, beam_size=5, best_of=5) transcribe_options = dict(task="transcribe", **options) result = model.transcribe(audio_file, **transcribe_options) segments = result["segments"] print("starting whisper done with whisper") except Exception as e: raise RuntimeError("Error converting video to audio") try: # Create embedding def segment_embedding(segment): audio = Audio() start = segment["start"] # Whisper overshoots the end timestamp in the last segment end = min(duration, segment["end"]) clip = Segment(start, end) waveform, sample_rate = audio.crop(audio_file, clip) return embedding_model(waveform[None]) embeddings = np.zeros(shape=(len(segments), 192)) for i, segment in enumerate(segments): embeddings[i] = segment_embedding(segment) embeddings = np.nan_to_num(embeddings) print(f'Embedding shape: {embeddings.shape}') # Assign speaker label clustering = AgglomerativeClustering(num_speakers).fit(embeddings) labels = clustering.labels_ for i in range(len(segments)): segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) # Make output objects = { 'Start' : [], 'End': [], 'Speaker': [], 'Text': [] } text = '' for (i, segment) in enumerate(segments): if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: objects['Start'].append(str(convert_time(segment["start"]))) objects['Speaker'].append(segment["speaker"]) if i != 0: objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) text = '' text += segment["text"] + ' ' objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) time_end = time.time() time_diff = time_end - time_start memory = psutil.virtual_memory() gpu_utilization, gpu_memory = GPUInfo.gpu_usage() gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 system_info = f""" *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* *Processing time: {time_diff:.5} seconds.* *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.* """ os.remove(file_name) print(output_types) docx = not set(['docx']).isdisjoint(output_types) markdown = not set(['md']).isdisjoint(output_types) csv = not set(['csv']).isdisjoint(output_types) other_outs = zip_files(otheroutputs(objects, csv=csv, markdown=markdown, docx=docx,upload_name=upload_name)) return pd.DataFrame(objects), system_info, other_outs except Exception as e: raise RuntimeError("Error Running inference with local model", e) def main(): df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text']) memory = psutil.virtual_memory() try: cuda_device_model = {torch.cuda.get_device_name(torch.cuda.current_device())} except: cuda_device_model = "CUDA not found" system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB* Have CUDA?: {torch.cuda.is_available()} CUDA Device: {cuda_device_model}") transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') zip_download = gr.File(label="Output") title = "Whisper speaker diarization" demo = gr.Blocks(title=title) demo.queue(concurrency_count=3) demo.encrypt = False selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in recording", interactive=True) selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True) number_speakers = gr.Number(precision=0, value=2, label="Selected number of speakers", interactive=True) out_formats = ["docx","md","csv"] output_types = gr.CheckboxGroup(choices=out_formats, value=out_formats, label="Select output types", interactive=True) with demo: with gr.Tab("Transcribe Audio Files"): with gr.Row(): gr.HTML('') gr.Markdown("""## Transcribe your audio files This tool will help you transcribe audio files, tag the speakers (i.e. Speaker 1, Speaker 2). Steps: 1. Upload file (drag/drop to upload area or click and select) 2. Select language 2. Select model version (larger size == slower, but higher accuracy) 3. Hint at the number of speakers in the audio file (doesn't have to be exact) 3. Choose output formats you'd like 4. Click Transcribe! 5. Wait for it to finish, and download the outputfile """) with gr.Row(): with gr.Column(): upload_diarize = gr.File(type="file", label="Upload Audio", interactive=True) with gr.Row(): with gr.Column(): selected_source_lang.render() selected_whisper_model.render() number_speakers.render() output_types.render() transcribe_btn = gr.Button(" 🟢 Transcribe! ") transcribe_btn.click(speech_to_text, [upload_diarize, selected_source_lang, selected_whisper_model, number_speakers, output_types], [transcription_df, system_info, zip_download], api_name="diarized_transcribe") with gr.Row(): with gr.Column(): zip_download.render() transcription_df.render() system_info.render() demo.launch(show_error=True, debug=True) if __name__ == "__main__": import sys input_file = sys.argv[1] selected_source_lang = "en" selected_whisper_model = "base" number_speakers = 2 speech_to_text(input_file, selected_source_lang, selected_whisper_model, number_speakers ) else: main()