Spaces:
Sleeping
Sleeping
File size: 57,721 Bytes
bd6c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 |
"""
This file defines the 2D blocks for the UNet model in a PyTorch implementation.
The UNet model is a popular architecture for image segmentation tasks,
which consists of an encoder, a decoder, and a skip connection mechanism.
The 2D blocks in this file include various types of layers, such as ResNet blocks,
Transformer blocks, and cross-attention blocks,
which are used to build the encoder and decoder parts of the UNet model.
The AutoencoderTinyBlock class is a simple autoencoder block for tiny models,
and the UNetMidBlock2D and CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D,
and UpBlock2D classes are used for the middle and decoder parts of the UNet model.
The classes and functions in this file provide a flexible and modular way
to construct the UNet model for different image segmentation tasks.
"""
from typing import Any, Dict, Optional, Tuple, Union
import torch
from diffusers.models.activations import get_activation
from diffusers.models.attention_processor import Attention
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformers.dual_transformer_2d import \
DualTransformer2DModel
from diffusers.utils import is_torch_version, logging
from diffusers.utils.torch_utils import apply_freeu
from torch import nn
from .transformer_2d import Transformer2DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_down_block(
down_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
temb_channels: int,
add_downsample: bool,
resnet_eps: float,
resnet_act_fn: str,
transformer_layers_per_block: int = 1,
num_attention_heads: Optional[int] = None,
resnet_groups: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
downsample_padding: Optional[int] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
attention_type: str = "default",
attention_head_dim: Optional[int] = None,
dropout: float = 0.0,
):
""" This function creates and returns a UpBlock2D or CrossAttnUpBlock2D object based on the given up_block_type.
Args:
up_block_type (str): The type of up block to create. Must be either "UpBlock2D" or "CrossAttnUpBlock2D".
num_layers (int): The number of layers in the ResNet block.
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
prev_output_channel (int): The number of channels in the previous output.
temb_channels (int): The number of channels in the token embedding.
add_upsample (bool): Whether to add an upsample layer after the ResNet block. Defaults to True.
resnet_eps (float): The epsilon value for the ResNet block. Defaults to 1e-6.
resnet_act_fn (str): The activation function to use in the ResNet block. Defaults to "swish".
resnet_groups (int): The number of groups in the ResNet block. Defaults to 32.
resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet block. Defaults to True.
output_scale_factor (float): The scale factor to apply to the output. Defaults to 1.0.
Returns:
nn.Module: The created UpBlock2D or CrossAttnUpBlock2D object.
"""
# If attn head dim is not defined, we default it to the number of heads
if attention_head_dim is None:
logger.warning("It is recommended to provide `attention_head_dim` when calling `get_down_block`.")
logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.")
attention_head_dim = num_attention_heads
down_block_type = (
down_block_type[7:]
if down_block_type.startswith("UNetRes")
else down_block_type
)
if down_block_type == "DownBlock2D":
return DownBlock2D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
dropout=dropout,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
)
if down_block_type == "CrossAttnDownBlock2D":
if cross_attention_dim is None:
raise ValueError(
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
)
return CrossAttnDownBlock2D(
num_layers=num_layers,
transformer_layers_per_block=transformer_layers_per_block,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
dropout=dropout,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_type=attention_type,
)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
add_upsample: bool,
resnet_eps: float,
resnet_act_fn: str,
resolution_idx: Optional[int] = None,
transformer_layers_per_block: int = 1,
num_attention_heads: Optional[int] = None,
resnet_groups: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
attention_type: str = "default",
attention_head_dim: Optional[int] = None,
dropout: float = 0.0,
) -> nn.Module:
""" This function ...
Args:
Returns:
"""
# If attn head dim is not defined, we default it to the number of heads
if attention_head_dim is None:
logger.warning("It is recommended to provide `attention_head_dim` when calling `get_up_block`.")
logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.")
attention_head_dim = num_attention_heads
up_block_type = (
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
)
if up_block_type == "UpBlock2D":
return UpBlock2D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
resolution_idx=resolution_idx,
dropout=dropout,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
)
if up_block_type == "CrossAttnUpBlock2D":
if cross_attention_dim is None:
raise ValueError(
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
)
return CrossAttnUpBlock2D(
num_layers=num_layers,
transformer_layers_per_block=transformer_layers_per_block,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
resolution_idx=resolution_idx,
dropout=dropout,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_type=attention_type,
)
raise ValueError(f"{up_block_type} does not exist.")
class AutoencoderTinyBlock(nn.Module):
"""
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
blocks.
Args:
in_channels (`int`): The number of input channels.
out_channels (`int`): The number of output channels.
act_fn (`str`):
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
Returns:
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
`out_channels`.
"""
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
super().__init__()
act_fn = get_activation(act_fn)
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
act_fn,
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
act_fn,
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
)
self.skip = (
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
if in_channels != out_channels
else nn.Identity()
)
self.fuse = nn.ReLU()
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
"""
Forward pass of the AutoencoderTinyBlock class.
Parameters:
x (torch.FloatTensor): The input tensor to the AutoencoderTinyBlock.
Returns:
torch.FloatTensor: The output tensor after passing through the AutoencoderTinyBlock.
"""
return self.fuse(self.conv(x) + self.skip(x))
class UNetMidBlock2D(nn.Module):
"""
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
Args:
in_channels (`int`): The number of input channels.
temb_channels (`int`): The number of temporal embedding channels.
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
model on tasks with long-range temporal dependencies.
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
resnet_groups (`int`, *optional*, defaults to 32):
The number of groups to use in the group normalization layers of the resnet blocks.
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
Whether to use pre-normalization for the resnet blocks.
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
attention_head_dim (`int`, *optional*, defaults to 1):
Dimension of a single attention head. The number of attention heads is determined based on this value and
the number of input channels.
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
Returns:
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
in_channels, height, width)`.
"""
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default", # default, spatial
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
attn_groups: Optional[int] = None,
resnet_pre_norm: bool = True,
add_attention: bool = True,
attention_head_dim: int = 1,
output_scale_factor: float = 1.0,
):
super().__init__()
resnet_groups = (
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
)
self.add_attention = add_attention
if attn_groups is None:
attn_groups = (
resnet_groups if resnet_time_scale_shift == "default" else None
)
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
attentions = []
if attention_head_dim is None:
logger.warning(
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
)
attention_head_dim = in_channels
for _ in range(num_layers):
if self.add_attention:
attentions.append(
Attention(
in_channels,
heads=in_channels // attention_head_dim,
dim_head=attention_head_dim,
rescale_output_factor=output_scale_factor,
eps=resnet_eps,
norm_num_groups=attn_groups,
spatial_norm_dim=(
temb_channels
if resnet_time_scale_shift == "spatial"
else None
),
residual_connection=True,
bias=True,
upcast_softmax=True,
_from_deprecated_attn_block=True,
)
)
else:
attentions.append(None)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
"""
Forward pass of the UNetMidBlock2D class.
Args:
hidden_states (torch.FloatTensor): The input tensor to the UNetMidBlock2D.
temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None.
Returns:
torch.FloatTensor: The output tensor after passing through the UNetMidBlock2D.
"""
# Your implementation here
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if attn is not None:
hidden_states = attn(hidden_states, temb=temb)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNetMidBlock2DCrossAttn(nn.Module):
"""
UNetMidBlock2DCrossAttn is a class that represents a mid-block 2D UNet with cross-attention.
This block is responsible for processing the input tensor with a series of residual blocks,
and applying cross-attention mechanism to attend to the global information in the encoder.
Args:
in_channels (int): The number of input channels.
temb_channels (int): The number of channels for the token embedding.
dropout (float, optional): The dropout rate. Defaults to 0.0.
num_layers (int, optional): The number of layers in the residual blocks. Defaults to 1.
resnet_eps (float, optional): The epsilon value for the residual blocks. Defaults to 1e-6.
resnet_time_scale_shift (str, optional): The time scale shift type for the residual blocks. Defaults to "default".
resnet_act_fn (str, optional): The activation function for the residual blocks. Defaults to "swish".
resnet_groups (int, optional): The number of groups for the residual blocks. Defaults to 32.
resnet_pre_norm (bool, optional): Whether to apply pre-normalization for the residual blocks. Defaults to True.
num_attention_heads (int, optional): The number of attention heads for cross-attention. Defaults to 1.
cross_attention_dim (int, optional): The dimension of the cross-attention. Defaults to 1280.
output_scale_factor (float, optional): The scale factor for the output tensor. Defaults to 1.0.
"""
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
output_scale_factor: float = 1.0,
cross_attention_dim: int = 1280,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
upcast_attention: bool = False,
attention_type: str = "default",
):
super().__init__()
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
resnet_groups = (
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
)
# support for variable transformer layers per block
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
attentions = []
for i in range(num_layers):
if not dual_cross_attention:
attentions.append(
Transformer2DModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
attention_type=attention_type,
)
)
else:
attentions.append(
DualTransformer2DModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Forward pass for the UNetMidBlock2DCrossAttn class.
Args:
hidden_states (torch.FloatTensor): The input hidden states tensor.
temb (Optional[torch.FloatTensor], optional): The optional tensor for time embeddings.
encoder_hidden_states (Optional[torch.FloatTensor], optional): The optional encoder hidden states tensor.
attention_mask (Optional[torch.FloatTensor], optional): The optional attention mask tensor.
cross_attention_kwargs (Optional[Dict[str, Any]], optional): The optional cross-attention kwargs tensor.
encoder_attention_mask (Optional[torch.FloatTensor], optional): The optional encoder attention mask tensor.
Returns:
torch.FloatTensor: The output tensor after passing through the UNetMidBlock2DCrossAttn layers.
"""
lora_scale = (
cross_attention_kwargs.get("scale", 1.0)
if cross_attention_kwargs is not None
else 1.0
)
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states, _ref_feature = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states, _ref_feature = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
return hidden_states
class CrossAttnDownBlock2D(nn.Module):
"""
CrossAttnDownBlock2D is a class that represents a 2D cross-attention downsampling block.
This block is used in the UNet model and consists of a series of ResNet blocks and Transformer layers.
It takes input hidden states, a tensor embedding, and optional encoder hidden states, attention mask,
and cross-attention kwargs. The block performs a series of operations including downsampling, cross-attention,
and residual connections.
Attributes:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
temb_channels (int): The number of tensor embedding channels.
dropout (float): The dropout rate.
num_layers (int): The number of ResNet layers.
transformer_layers_per_block (Union[int, Tuple[int]]): The number of Transformer layers per block.
resnet_eps (float): The ResNet epsilon value.
resnet_time_scale_shift (str): The ResNet time scale shift type.
resnet_act_fn (str): The ResNet activation function.
resnet_groups (int): The ResNet group size.
resnet_pre_norm (bool): Whether to use ResNet pre-normalization.
num_attention_heads (int): The number of attention heads.
cross_attention_dim (int): The cross-attention dimension.
output_scale_factor (float): The output scale factor.
downsample_padding (int): The downsampling padding.
add_downsample (bool): Whether to add downsampling.
dual_cross_attention (bool): Whether to use dual cross-attention.
use_linear_projection (bool): Whether to use linear projection.
only_cross_attention (bool): Whether to use only cross-attention.
upcast_attention (bool): Whether to upcast attention.
attention_type (str): The attention type.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
downsample_padding: int = 1,
add_downsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
attention_type: str = "default",
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
if not dual_cross_attention:
attentions.append(
Transformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_type=attention_type,
)
)
else:
attentions.append(
DualTransformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
additional_residuals: Optional[torch.FloatTensor] = None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
"""
Forward pass for the CrossAttnDownBlock2D class.
Args:
hidden_states (torch.FloatTensor): The input hidden states.
temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None.
encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states. Defaults to None.
attention_mask (Optional[torch.FloatTensor], optional): The attention mask. Defaults to None.
cross_attention_kwargs (Optional[Dict[str, Any]], optional): The cross-attention kwargs. Defaults to None.
encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask. Defaults to None.
additional_residuals (Optional[torch.FloatTensor], optional): The additional residuals. Defaults to None.
Returns:
Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output hidden states and residuals.
"""
output_states = ()
lora_scale = (
cross_attention_kwargs.get("scale", 1.0)
if cross_attention_kwargs is not None
else 1.0
)
blocks = list(zip(self.resnets, self.attentions))
for i, (resnet, attn) in enumerate(blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states, _ref_feature = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states, _ref_feature = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)
# apply additional residuals to the output of the last pair of resnet and attention blocks
if i == len(blocks) - 1 and additional_residuals is not None:
hidden_states = hidden_states + additional_residuals
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states, scale=lora_scale)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class DownBlock2D(nn.Module):
"""
DownBlock2D is a class that represents a 2D downsampling block in a neural network.
It takes the following parameters:
- in_channels (int): The number of input channels in the block.
- out_channels (int): The number of output channels in the block.
- temb_channels (int): The number of channels in the token embedding.
- dropout (float): The dropout rate for the block.
- num_layers (int): The number of layers in the block.
- resnet_eps (float): The epsilon value for the ResNet layer.
- resnet_time_scale_shift (str): The type of activation function for the ResNet layer.
- resnet_act_fn (str): The activation function for the ResNet layer.
- resnet_groups (int): The number of groups in the ResNet layer.
- resnet_pre_norm (bool): Whether to apply layer normalization before the ResNet layer.
- output_scale_factor (float): The scale factor for the output.
- add_downsample (bool): Whether to add a downsampling layer.
- downsample_padding (int): The padding value for the downsampling layer.
The DownBlock2D class inherits from the nn.Module class and defines the following methods:
- __init__: Initializes the DownBlock2D class with the given parameters.
- forward: Forward pass of the DownBlock2D class.
The forward method takes the following parameters:
- hidden_states (torch.FloatTensor): The input tensor to the block.
- temb (Optional[torch.FloatTensor]): The token embedding tensor.
- scale (float): The scale factor for the input tensor.
The forward method returns a tuple containing the output tensor and a tuple of hidden states.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
"""
Forward pass of the DownBlock2D class.
Args:
hidden_states (torch.FloatTensor): The input tensor to the DownBlock2D layer.
temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None.
scale (float, optional): The scale factor for the input tensor. Defaults to 1.0.
Returns:
Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output tensor and any additional hidden states.
"""
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb, scale=scale)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states, scale=scale)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class CrossAttnUpBlock2D(nn.Module):
"""
CrossAttnUpBlock2D is a class that represents a cross-attention UpBlock in a 2D UNet architecture.
This block is responsible for upsampling the input tensor and performing cross-attention with the encoder's hidden states.
Args:
in_channels (int): The number of input channels in the tensor.
out_channels (int): The number of output channels in the tensor.
prev_output_channel (int): The number of channels in the previous output tensor.
temb_channels (int): The number of channels in the token embedding tensor.
resolution_idx (Optional[int]): The index of the resolution in the model.
dropout (float): The dropout rate for the layer.
num_layers (int): The number of layers in the ResNet block.
transformer_layers_per_block (Union[int, Tuple[int]]): The number of transformer layers per block.
resnet_eps (float): The epsilon value for the ResNet layer.
resnet_time_scale_shift (str): The type of time scale shift to be applied in the ResNet layer.
resnet_act_fn (str): The activation function to be used in the ResNet layer.
resnet_groups (int): The number of groups in the ResNet layer.
resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet layer.
num_attention_heads (int): The number of attention heads in the cross-attention layer.
cross_attention_dim (int): The dimension of the cross-attention layer.
output_scale_factor (float): The scale factor for the output tensor.
add_upsample (bool): Whether to add upsampling to the block.
dual_cross_attention (bool): Whether to use dual cross-attention.
use_linear_projection (bool): Whether to use linear projection in the cross-attention layer.
only_cross_attention (bool): Whether to only use cross-attention and no self-attention.
upcast_attention (bool): Whether to upcast the attention weights.
attention_type (str): The type of attention to be used in the cross-attention layer.
Attributes:
up_block (nn.Module): The UpBlock module responsible for upsampling the input tensor.
cross_attn (nn.Module): The cross-attention module that performs attention between
the decoder's hidden states and the encoder's hidden states.
resnet_blocks (nn.ModuleList): A list of ResNet blocks that make up the ResNet portion of the block.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
dropout: float = 0.0,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
attention_type: str = "default",
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
if not dual_cross_attention:
attentions.append(
Transformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_type=attention_type,
)
)
else:
attentions.append(
DualTransformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList(
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
)
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Forward pass for the CrossAttnUpBlock2D class.
Args:
self (CrossAttnUpBlock2D): An instance of the CrossAttnUpBlock2D class.
hidden_states (torch.FloatTensor): The input hidden states tensor.
res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states tensors.
temb (Optional[torch.FloatTensor], optional): The token embeddings tensor. Defaults to None.
encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states tensor. Defaults to None.
cross_attention_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for cross attention. Defaults to None.
upsample_size (Optional[int], optional): The upsample size. Defaults to None.
attention_mask (Optional[torch.FloatTensor], optional): The attention mask tensor. Defaults to None.
encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask tensor. Defaults to None.
Returns:
torch.FloatTensor: The output tensor after passing through the block.
"""
lora_scale = (
cross_attention_kwargs.get("scale", 1.0)
if cross_attention_kwargs is not None
else 1.0
)
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states, _ref_feature = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states, _ref_feature = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(
hidden_states, upsample_size, scale=lora_scale
)
return hidden_states
class UpBlock2D(nn.Module):
"""
UpBlock2D is a class that represents a 2D upsampling block in a neural network.
This block is used for upsampling the input tensor by a factor of 2 in both dimensions.
It takes the previous output channel, input channels, and output channels as input
and applies a series of convolutional layers, batch normalization, and activation
functions to produce the upsampled tensor.
Args:
in_channels (int): The number of input channels in the tensor.
prev_output_channel (int): The number of channels in the previous output tensor.
out_channels (int): The number of output channels in the tensor.
temb_channels (int): The number of channels in the time embedding tensor.
resolution_idx (Optional[int], optional): The index of the resolution in the sequence of resolutions. Defaults to None.
dropout (float, optional): The dropout rate to be applied to the convolutional layers. Defaults to 0.0.
num_layers (int, optional): The number of convolutional layers in the block. Defaults to 1.
resnet_eps (float, optional): The epsilon value used in the batch normalization layer. Defaults to 1e-6.
resnet_time_scale_shift (str, optional): The type of activation function to be applied after the convolutional layers. Defaults to "default".
resnet_act_fn (str, optional): The activation function to be applied after the batch normalization layer. Defaults to "swish".
resnet_groups (int, optional): The number of groups in the group normalization layer. Defaults to 32.
resnet_pre_norm (bool, optional): A flag indicating whether to apply layer normalization before the activation function. Defaults to True.
output_scale_factor (float, optional): The scale factor to be applied to the output tensor. Defaults to 1.0.
add_upsample (bool, optional): A flag indicating whether to add an upsampling layer to the block. Defaults to True.
Attributes:
layers (nn.ModuleList): A list of nn.Module objects representing the convolutional layers in the block.
upsample (nn.Module): The upsampling layer in the block, if add_upsample is True.
"""
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList(
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
)
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
upsample_size: Optional[int] = None,
scale: float = 1.0,
) -> torch.FloatTensor:
"""
Forward pass for the UpBlock2D class.
Args:
self (UpBlock2D): An instance of the UpBlock2D class.
hidden_states (torch.FloatTensor): The input tensor to the block.
res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states.
temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None.
upsample_size (Optional[int], optional): The size to upsample the input tensor to. Defaults to None.
scale (float, optional): The scale factor to apply to the input tensor. Defaults to 1.0.
Returns:
torch.FloatTensor: The output tensor after passing through the block.
"""
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb, scale=scale)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
return hidden_states
|