""" Copyright (c) 2023, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import torch from torch.cuda.amp import autocast as autocast import torch.nn as nn from lavis.common.registry import registry from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train from lavis.models.blip2_models.modeling_opt import OPTForCausalLM, OPTConfig from transformers import AutoTokenizer @registry.register_model("blip2_opt") class Blip2OPT(Blip2Base): """ BLIP2 OPT model. Supported model types: - pretrained_opt2.7b: pretrained model with OPT2.7b - pretrained_opt6.7b: pretrained model with OPT6.7b - caption_coco_opt2.7b: fintuned image captioning model with OPT2.7b - caption_coco_opt6.7b: fintuned image captioning model with OPT6.7b Usage: >>> from lavis.models import load_model >>> model = load_model("blip2_opt", "caption_coco_opt2.7b") """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain_opt2.7b": "configs/models/blip2/blip2_pretrain_opt2.7b.yaml", "pretrain_opt6.7b": "configs/models/blip2/blip2_pretrain_opt6.7b.yaml", "caption_coco_opt2.7b": "configs/models/blip2/blip2_caption_opt2.7b.yaml", "caption_coco_opt6.7b": "configs/models/blip2/blip2_caption_opt6.7b.yaml", } def __init__( self, vit_model="eva_clip_g", img_size=224, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, num_query_token=32, opt_model="facebook/opt-2.7b", prompt="", max_txt_len=32, ): super().__init__() self.tokenizer = self.init_tokenizer() self.visual_encoder, self.ln_vision = self.init_vision_encoder( vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) if freeze_vit: for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train logging.info("freeze vision encoder") self.Qformer, self.query_tokens = self.init_Qformer( num_query_token, self.visual_encoder.num_features ) self.Qformer.cls = None self.Qformer.bert.embeddings.word_embeddings = None self.Qformer.bert.embeddings.position_embeddings = None for layer in self.Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None self.opt_tokenizer = AutoTokenizer.from_pretrained(opt_model, use_fast=False) self.opt_model = OPTForCausalLM.from_pretrained( opt_model, torch_dtype=torch.float16 ) for name, param in self.opt_model.named_parameters(): param.requires_grad = False self.eos_token_id = self.opt_tokenizer( "\n", add_special_tokens=False ).input_ids[0] self.opt_proj = nn.Linear( self.Qformer.config.hidden_size, self.opt_model.config.hidden_size ) self.max_txt_len = max_txt_len self.prompt = prompt prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt") self.prompt_length = prompt_tokens.attention_mask.sum(1) def forward(self, samples): image = samples["image"] with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( image.device ) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_opt = self.opt_proj(query_output.last_hidden_state) atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device) self.opt_tokenizer.padding_side = "right" text = [t + "\n" for t in samples["text_input"]] opt_tokens = self.opt_tokenizer( text, return_tensors="pt", padding="longest", truncation=True, max_length=self.max_txt_len, ).to(image.device) targets = opt_tokens.input_ids.masked_fill( opt_tokens.input_ids == self.opt_tokenizer.pad_token_id, -100 ) if self.prompt: targets[:, : self.prompt_length] = -100 # do not apply loss to the prompt empty_targets = ( torch.ones(atts_opt.size(), dtype=torch.long).to(image.device).fill_(-100) ) targets = torch.cat([empty_targets, targets], dim=1) inputs_embeds = self.opt_model.model.decoder.embed_tokens(opt_tokens.input_ids) inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1) attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1) with self.maybe_autocast(): outputs = self.opt_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} @torch.no_grad() def generate( self, samples, use_nucleus_sampling=False, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, num_captions=1, temperature=1, ): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling. num_beams (int): Number of beams for beam search. 1 means no beam search. max_length (int): The maximum length of the sequence to be generated. min_length (int): The minimum length of the sequence to be generated. top_p (float): The cumulative probability for nucleus sampling. repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. num_captions (int): Number of captions to be generated for each image. Returns: captions (list): A list of strings of length batch_size * num_captions. """ image = samples["image"] with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( image.device ) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_opt = self.opt_proj(query_output.last_hidden_state) atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to( image.device ) if "prompt" in samples.keys(): prompt = samples["prompt"] else: prompt = self.prompt prompt = [prompt] * image.size(0) opt_tokens = self.opt_tokenizer(prompt, return_tensors="pt").to( image.device ) input_ids = opt_tokens.input_ids attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1) if use_nucleus_sampling: query_embeds = inputs_opt.repeat_interleave(num_captions, dim=0) num_beams = 1 else: query_embeds = inputs_opt.repeat_interleave(num_beams, dim=0) outputs = self.opt_model.generate( input_ids=input_ids, query_embeds=query_embeds, attention_mask=attention_mask, do_sample=use_nucleus_sampling, top_p=top_p, temperature=temperature, num_beams=num_beams, max_new_tokens=max_length, min_length=min_length, eos_token_id=self.eos_token_id, repetition_penalty=repetition_penalty, length_penalty=length_penalty, num_return_sequences=num_captions, ) prompt_length = opt_tokens.input_ids.shape[1] output_text = self.opt_tokenizer.batch_decode( outputs[:, prompt_length:], skip_special_tokens=True ) output_text = [text.strip() for text in output_text] return output_text @classmethod def from_config(cls, cfg): vit_model = cfg.get("vit_model", "eva_clip_g") img_size = cfg.get("image_size") num_query_token = cfg.get("num_query_token") opt_model = cfg.get("opt_model") drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) vit_precision = cfg.get("vit_precision", "fp16") freeze_vit = cfg.get("freeze_vit", True) prompt = cfg.get("prompt", "") max_txt_len = cfg.get("max_txt_len", 32) model = cls( vit_model=vit_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, num_query_token=num_query_token, opt_model=opt_model, prompt=prompt, max_txt_len=max_txt_len, ) model.load_checkpoint_from_config(cfg) return model