# Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import os os.system('pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html') try: import detectron2 except: import os # os.system('cd /home/user/app/third_party/CLIP && pip install -Ue .') os.system('pip install git+https://github.com/Jun-CEN/CLIP.git') os.system('pip install git+https://github.com/facebookresearch/detectron2.git') os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git') os.system('pip install git+https://github.com/facebookresearch/segment-anything.git') import argparse import glob import multiprocessing as mp import os import time import cv2 import tqdm import numpy as np import gradio as gr from tools.util import * from detectron2.config import get_cfg from detectron2.projects.deeplab import add_deeplab_config from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger from open_vocab_seg import add_ovseg_config from open_vocab_seg.utils import VisualizationDemo, VisualizationDemoIndoor # constants WINDOW_NAME = "Open vocabulary segmentation" def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() # for poly lr schedule add_deeplab_config(cfg) add_ovseg_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation") parser.add_argument( "--config-file", default="configs/ovseg_swinB_vitL_demo.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--input", default=["/mnt/lustre/jkyang/PSG4D/sailvos3d/downloads/sailvos3d/trevor_1_int/images/000160.bmp"], nargs="+", help="A list of space separated input images; " "or a single glob pattern such as 'directory/*.jpg'", ) parser.add_argument( "--class-names", default=["person", "car", "motorcycle", "truck", "bird", "dog", "handbag", "suitcase", "bottle", "cup", "bowl", "chair", "potted plant", "bed", "dining table", "tv", "laptop", "cell phone", "bag", "bin", "box", "door", "road barrier", "stick", "lamp", "floor", "wall"], nargs="+", help="A list of user-defined class_names" ) parser.add_argument( "--output", default = "./pred", help="A file or directory to save output visualizations. " "If not given, will show output in an OpenCV window.", ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=["MODEL.WEIGHTS", "ovseg_swinbase_vitL14_ft_mpt.pth"], nargs=argparse.REMAINDER, ) return parser args = get_parser().parse_args() def greet_sailvos3d(rgb_input, depth_map_input, rage_matrices_input, class_candidates): print(args.class_names) print(class_candidates[0], class_candidates[1], class_candidates[2], class_candidates[3],) print(class_candidates.split(', ')) args.input = [rgb_input] args.class_names = class_candidates.split(', ') depth_map_path = depth_map_input.name rage_matrices_path = rage_matrices_input.name print(args.input, args.class_names, depth_map_path, rage_matrices_path) mp.set_start_method("spawn", force=True) setup_logger(name="fvcore") logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup_cfg(args) demo = VisualizationDemo(cfg) class_names = args.class_names print(args.input) if args.input: if len(args.input) == 1: args.input = glob.glob(os.path.expanduser(args.input[0])) assert args.input, "The input path(s) was not found" for path in tqdm.tqdm(args.input, disable=not args.output): # use PIL, to be consistent with evaluation start_time = time.time() predictions, visualized_output_rgb, visualized_output_depth, visualized_output_rgb_sam, visualized_output_depth_sam = demo.run_on_image_sam(path, class_names, depth_map_path, rage_matrices_path) logger.info( "{}: {} in {:.2f}s".format( path, "detected {} instances".format(len(predictions["instances"])) if "instances" in predictions else "finished", time.time() - start_time, ) ) if args.output: if os.path.isdir(args.output): assert os.path.isdir(args.output), args.output out_filename = os.path.join(args.output, os.path.basename(path)) else: assert len(args.input) == 1, "Please specify a directory with args.output" out_filename = args.output visualized_output_rgb.save('outputs/RGB_Semantic_SAM.png') visualized_output_depth.save('outputs/Depth_Semantic_SAM.png') visualized_output_rgb_sam.save('outputs/RGB_Semantic_SAM_Mask.png') visualized_output_depth_sam.save('outputs/Depth_Semantic_SAM_Mask.png') rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', depth_map_path, rage_matrices_path) depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', depth_map_path, rage_matrices_path) rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path) depth_3d_sam_mask = demo.get_xyzrgb('outputs/Depth_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path) np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sam, depth_3d_sam = depth_3d_sam, rgb_3d_sam_mask = rgb_3d_sam_mask, depth_3d_sam_mask = depth_3d_sam_mask) demo.render_3d_video('outputs/xyzrgb.npz', depth_map_path) else: cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) cv2.imshow(WINDOW_NAME, visualized_output_rgb.get_image()[:, :, ::-1]) if cv2.waitKey(0) == 27: break # esc to quit else: raise NotImplementedError Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png') RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png') Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png') RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png') two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D') two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D') Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4' RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4' Depth_map = read_image('outputs/Depth_rendered.png') Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4' RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4' return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif def greet_scannet(rgb_input, depth_map_input, class_candidates): rgb_input = rgb_input depth_map_input = depth_map_input.name class_candidates = class_candidates.split(', ') print(rgb_input, depth_map_input, class_candidates) mp.set_start_method("spawn", force=True) args = get_parser().parse_args() setup_logger(name="fvcore") logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup_cfg(args) demo = VisualizationDemoIndoor(cfg) """ args.input = glob.glob(os.path.expanduser(args.input[0])) assert args.input, "The input path(s) was not found" """ start_time = time.time() predictions, output2D, output3D = demo.run_on_pcd_ui(rgb_input, depth_map_input, class_candidates) output2D['sem_seg_on_rgb'].save('outputs/RGB_Semantic_SAM.png') output2D['sem_seg_on_depth'].save('outputs/Depth_Semantic_SAM.png') output2D['sam_seg_on_rgb'].save('outputs/RGB_Semantic_SAM_Mask.png') output2D['sam_seg_on_depth'].save('outputs/Depth_Semantic_SAM_Mask.png') """ rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', path) depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', path) rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', path) depth_3d_sam_mask = demo.get_xyzrgb(outputs/'Depth_Semantic_SAM_Mask.png', path) """ rgb_3d_sem = output3D['rgb_3d_sem'] depth_3d_sem = output3D['depth_3d_sem'] rgb_3d_sam = output3D['rgb_3d_sam'] depth_3d_sam = output3D['depth_3d_sam'] np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sem, depth_3d_sam = depth_3d_sem, rgb_3d_sam_mask = rgb_3d_sam, depth_3d_sam_mask = depth_3d_sam) demo.render_3d_video('outputs/xyzrgb.npz') Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png') RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png') Depth_Semantic_SAM = read_image('outputs/Depth_Semantic_SAM.png') RGB_Semantic_SAM = read_image('outputs/RGB_Semantic_SAM.png') two_image_to_gif(Depth_Semantic_SAM_Mask, Depth_Semantic_SAM, 'Depth_Semantic_SAM_2D') two_image_to_gif(RGB_Semantic_SAM_Mask, RGB_Semantic_SAM, 'RGB_Semantic_SAM_2D') Depth_Semantic_SAM_2D = 'outputs/Depth_Semantic_SAM_2D.mp4' RGB_Semantic_SAM_2D = 'outputs/RGB_Semantic_SAM_2D.mp4' Depth_map = read_image('outputs/Depth_rendered.png') Depth_Semantic_SAM_Mask_gif = 'outputs/Depth_3D_All.mp4' RGB_Semantic_SAM_Mask_gif = 'outputs/RGB_3D_All.mp4' return RGB_Semantic_SAM_2D, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_2D, Depth_Semantic_SAM_Mask_gif with gr.Blocks(analytics_enabled=False) as segrgbd_iface: gr.Markdown("

Segment Any RGBD

\ Github
") gr.Markdown(" Note that you need a GPU for this project. You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. Duplicate Space ") #######t2v####### with gr.Tab(label="Dataset: Sailvos3D"): with gr.Column(): with gr.Row(): # with gr.Tab(label='input'): with gr.Column(): with gr.Row(): Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200) Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200) with gr.Row(): Depth_Map_Input_Component = gr.File(label = 'input_Depth_map') Component_2D_to_3D_Projection_Parameters = gr.File(label = '2D_to_3D_Projection_Parameters') with gr.Row(): Class_Candidates_Component = gr.Text(label = 'Class_Candidates') vc_end_btn = gr.Button("Send") with gr.Tab(label='Result'): with gr.Row(): RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200) RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200) with gr.Row(): Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200) Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200) with gr.Row(): gr.Markdown(" It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.") gr.Examples(examples=[ [ 'UI/sailvos3d/ex1/inputs/rgb_000160.bmp', 'UI/sailvos3d/ex1/inputs/depth_000160.npy', 'UI/sailvos3d/ex1/inputs/rage_matrices_000160.npz', 'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall', ], [ 'UI/sailvos3d/ex2/inputs/rgb_000540.bmp', 'UI/sailvos3d/ex2/inputs/depth_000540.npy', 'UI/sailvos3d/ex2/inputs/rage_matrices_000540.npz', 'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall', ]], inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component], outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component], fn=greet_sailvos3d) vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component], outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component], fn=greet_sailvos3d) with gr.Tab(label="Dataset: Scannet"): with gr.Column(): with gr.Row(): # with gr.Tab(label='input'): with gr.Column(): with gr.Row(): Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200) Depth_Map_Output_Component = gr.Image(label = "Vis_Depth_Map").style(width=320, height=200) with gr.Row(): Depth_Map_Input_Component = gr.File(label = "Input_Depth_Map") Class_Candidates_Component = gr.Text(label = 'Class_Candidates') vc_end_btn = gr.Button("Send") with gr.Tab(label='Result'): with gr.Row(): RGB_Semantic_SAM_Mask_Component = gr.Video(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200) RGB_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_RGB_Semantic_SAM_Mask").style(width=320, height=200) with gr.Row(): Depth_Semantic_SAM_Mask_Component = gr.Video(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200) Depth_Semantic_SAM_Mask_3D_Component = gr.Video(label = "Video_3D_Depth_Semantic_SAM_Mask").style(width=320, height=200) with gr.Row(): gr.Markdown(" It takes around 2 to 5 minutes to get the final results. The framework initialization, SAM segmentation, zero-shot semantic segmentation and 3D results rendering take long time.") gr.Examples(examples=[ [ 'UI/scannetv2/examples/scene0000_00/color/1660.jpg', 'UI/scannetv2/examples/scene0000_00/depth/1660.png', 'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture', ], [ 'UI/scannetv2/examples/scene0000_00/color/5560.jpg', 'UI/scannetv2/examples/scene0000_00/depth/5560.png', 'wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub, other furniture', ]], inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component], outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component], fn=greet_scannet) vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Class_Candidates_Component], outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component], fn=greet_scannet) demo = segrgbd_iface demo.launch()