import collections from torch import nn from timm import create_model def get_model() -> nn.Sequential: net = create_model( "vit_tiny_patch16_224", pretrained=False, num_classes=0, in_chans=3 ) head = nn.Sequential( nn.BatchNorm1d(192), nn.Dropout(0.25), nn.Linear(192, 512, bias=False), nn.ReLU(inplace=True), nn.BatchNorm1d(512), nn.Dropout(0.5), nn.Linear(512, 200, bias=False), ) return nn.Sequential(net, head) def copy_weight(name, parameter, state_dict): """ Takes in a layer `name`, model `parameter`, and `state_dict` and loads the weights from `state_dict` into `parameter` if it exists. """ # Part of the body if name[0] == "0": name = name[:2] + "model." + name[2:] if name in state_dict.keys(): input_parameter = state_dict[name] if input_parameter.shape == parameter.shape: parameter.copy_(input_parameter) else: print(f"Shape mismatch at layer: {name}, skipping") else: print(f"{name} is not in the state_dict, skipping.") def apply_weights( input_model: nn.Module, input_weights: collections.OrderedDict, application_function: callable, ): """ Takes an input state_dict and applies those weights to the `input_model`, potentially with a modifier function. Args: input_model (`nn.Module`): The model that weights should be applied to input_weights (`collections.OrderedDict`): A dictionary of weights, the trained model's `state_dict()` application_function (`callable`): A function that takes in one parameter and layer name from `input_model` and the `input_weights`. Should apply the weights from the state dict into `input_model`. """ model_dict = input_model.state_dict() for name, parameter in model_dict.items(): application_function(name, parameter, input_weights) input_model.load_state_dict(model_dict)