FROM nvidia/cuda:12.5.1-cudnn-devel-ubuntu22.04 ARG DEBIAN_FRONTEND=noninteractive ENV PYTHONUNBUFFERED=1 RUN apt-get update && apt-get install -y \ build-essential \ python3.9 \ python3-pip \ git \ ffmpeg \ libcudnn8 \ libcudnn8-dev \ sudo RUN useradd -m docker && echo "docker:docker" | chpasswd && adduser docker sudo WORKDIR /code COPY ./requirements.txt /code/requirements.txt # make sure cudnn errors go away #RUN export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:`python3 -c 'import os; import torch; print(os.path.dirname(torch.__file__) +"/lib")'` RUN export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; import torch; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__) + ":" + os.path.dirname(torch.__file__) +"/lib")'`:$LD_LIBRARY_PATH # Set up a new user named "user" with user ID 1000 RUN useradd -m -u 1099 user # Switch to the "user" user #USER user # Set home to the user's home directory ENV PYTHONUNBUFFERED=1 \ GRADIO_ALLOW_FLAGGING=never \ GRADIO_NUM_PORTS=1 \ GRADIO_SERVER_NAME=0.0.0.0 \ GRADIO_THEME=huggingface \ SYSTEM=spaces RUN export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; import torch; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__) + ":" + os.path.dirname(torch.__file__) +"/lib")'`:$LD_LIBRARY_PATH RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt # Set the working directory to the user's home directory WORKDIR $HOME/app # Copy the current directory contents into the container at $HOME/app setting the owner to the user COPY --chown=user . $HOME/app CMD ["python3", "app.py"]