Sapir commited on
Commit
4535a03
1 Parent(s): 00c2119

Image to video: updated script.

Browse files
Files changed (2) hide show
  1. requirements.txt +3 -1
  2. xora/examples/image_to_video.py +127 -44
requirements.txt CHANGED
@@ -3,4 +3,6 @@ diffusers==0.28.2
3
  transformers==4.44.2
4
  sentencepiece>=0.1.96
5
  accelerate
6
- einops
 
 
 
3
  transformers==4.44.2
4
  sentencepiece>=0.1.96
5
  accelerate
6
+ einops
7
+ matplotlib
8
+ opencv-python
xora/examples/image_to_video.py CHANGED
@@ -9,6 +9,11 @@ from transformers import T5EncoderModel, T5Tokenizer
9
  import safetensors.torch
10
  import json
11
  import argparse
 
 
 
 
 
12
 
13
  def load_vae(vae_dir):
14
  vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
@@ -34,78 +39,156 @@ def load_scheduler(scheduler_dir):
34
  scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
35
  return RectifiedFlowScheduler.from_config(scheduler_config)
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  def main():
38
- # Parse command line arguments
39
- parser = argparse.ArgumentParser(description='Load models from separate directories')
40
- parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  args = parser.parse_args()
42
 
43
  # Paths for the separate mode directories
44
- separate_dir = Path(args.separate_dir)
45
- unet_dir = separate_dir / 'unet'
46
- vae_dir = separate_dir / 'vae'
47
- scheduler_dir = separate_dir / 'scheduler'
48
 
49
  # Load models
50
  vae = load_vae(vae_dir)
51
  unet = load_unet(unet_dir)
52
  scheduler = load_scheduler(scheduler_dir)
53
-
54
- # Patchifier (remains the same)
55
  patchifier = SymmetricPatchifier(patch_size=1)
56
-
57
- # text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
58
- # tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
59
 
60
  # Use submodels for the pipeline
61
  submodel_dict = {
62
- "transformer": unet, # using unet for transformer
63
  "patchifier": patchifier,
64
- "text_encoder": None,
65
- "tokenizer": None,
66
  "scheduler": scheduler,
67
  "vae": vae,
68
  }
69
 
70
- model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
71
- pipeline = VideoPixArtAlphaPipeline(
72
- **submodel_dict
73
- ).to("cuda")
74
-
75
- num_inference_steps = 20
76
- num_images_per_prompt = 1
77
- guidance_scale = 3
78
- height = 512
79
- width = 768
80
- num_frames = 57
81
- frame_rate = 25
82
-
83
- # Sample input stays the same
84
- sample = torch.load("/opt/sample_media.pt")
85
- for key, item in sample.items():
86
- if item is not None:
87
- sample[key] = item.cuda()
88
 
89
- # media_items = torch.load("/opt/sample_media.pt")
90
 
91
- # Generate images (video frames)
92
  images = pipeline(
93
- num_inference_steps=num_inference_steps,
94
- num_images_per_prompt=num_images_per_prompt,
95
- guidance_scale=guidance_scale,
96
- generator=None,
97
  output_type="pt",
98
  callback_on_step_end=None,
99
- height=height,
100
- width=width,
101
- num_frames=num_frames,
102
- frame_rate=frame_rate,
103
  **sample,
104
  is_video=True,
105
  vae_per_channel_normalize=True,
 
106
  ).images
107
 
108
- print("Generated video frames.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  if __name__ == "__main__":
111
  main()
 
9
  import safetensors.torch
10
  import json
11
  import argparse
12
+ from xora.utils.conditioning_method import ConditioningMethod
13
+ import os
14
+ import numpy as np
15
+ import cv2
16
+ from PIL import Image
17
 
18
  def load_vae(vae_dir):
19
  vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
 
39
  scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
40
  return RectifiedFlowScheduler.from_config(scheduler_config)
41
 
42
+ def center_crop_and_resize(frame, target_height, target_width):
43
+ h, w, _ = frame.shape
44
+ aspect_ratio_target = target_width / target_height
45
+ aspect_ratio_frame = w / h
46
+ if aspect_ratio_frame > aspect_ratio_target:
47
+ new_width = int(h * aspect_ratio_target)
48
+ x_start = (w - new_width) // 2
49
+ frame_cropped = frame[:, x_start:x_start + new_width]
50
+ else:
51
+ new_height = int(w / aspect_ratio_target)
52
+ y_start = (h - new_height) // 2
53
+ frame_cropped = frame[y_start:y_start + new_height, :]
54
+ frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
55
+ return frame_resized
56
+
57
+ def load_video_to_tensor_with_resize(video_path, target_height=512, target_width=768):
58
+ cap = cv2.VideoCapture(video_path)
59
+ frames = []
60
+ while True:
61
+ ret, frame = cap.read()
62
+ if not ret:
63
+ break
64
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
65
+ frame_resized = center_crop_and_resize(frame_rgb, target_height, target_width)
66
+ frames.append(frame_resized)
67
+ cap.release()
68
+ video_np = np.array(frames)
69
+ video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float()
70
+ video_tensor = (video_tensor / 127.5) - 1.0
71
+ return video_tensor
72
+
73
+ def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
74
+ image = Image.open(image_path).convert("RGB")
75
+ image_np = np.array(image)
76
+ frame_resized = center_crop_and_resize(image_np, target_height, target_width)
77
+ frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
78
+ frame_tensor = (frame_tensor / 127.5) - 1.0
79
+ # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
80
+ return frame_tensor.unsqueeze(0).unsqueeze(2)
81
+
82
  def main():
83
+ parser = argparse.ArgumentParser(description='Load models from separate directories and run the pipeline.')
84
+
85
+ # Directories
86
+ parser.add_argument('--ckpt_dir', type=str, required=True,
87
+ help='Path to the directory containing unet, vae, and scheduler subdirectories')
88
+ parser.add_argument('--video_path', type=str,
89
+ help='Path to the input video file (first frame used)')
90
+ parser.add_argument('--image_path', type=str,
91
+ help='Path to the input image file')
92
+ parser.add_argument('--seed', type=int, default="171198")
93
+
94
+ # Pipeline parameters
95
+ parser.add_argument('--num_inference_steps', type=int, default=40, help='Number of inference steps')
96
+ parser.add_argument('--num_images_per_prompt', type=int, default=1, help='Number of images per prompt')
97
+ parser.add_argument('--guidance_scale', type=float, default=3, help='Guidance scale for the pipeline')
98
+ parser.add_argument('--height', type=int, default=512, help='Height of the output video frames')
99
+ parser.add_argument('--width', type=int, default=768, help='Width of the output video frames')
100
+ parser.add_argument('--num_frames', type=int, default=121, help='Number of frames to generate in the output video')
101
+ parser.add_argument('--frame_rate', type=int, default=25, help='Frame rate for the output video')
102
+
103
+ # Prompts
104
+ parser.add_argument('--prompt', type=str,
105
+ default='A man wearing a black leather jacket and blue jeans is riding a Harley Davidson motorcycle down a paved road. The man has short brown hair and is wearing a black helmet. The motorcycle is a dark red color with a large front fairing. The road is surrounded by green grass and trees. There is a gas station on the left side of the road with a red and white sign that says "Oil" and "Diner".',
106
+ help='Text prompt to guide generation')
107
+ parser.add_argument('--negative_prompt', type=str,
108
+ default='worst quality, inconsistent motion, blurry, jittery, distorted',
109
+ help='Negative prompt for undesired features')
110
+
111
  args = parser.parse_args()
112
 
113
  # Paths for the separate mode directories
114
+ ckpt_dir = Path(args.ckpt_dir)
115
+ unet_dir = ckpt_dir / 'unet'
116
+ vae_dir = ckpt_dir / 'vae'
117
+ scheduler_dir = ckpt_dir / 'scheduler'
118
 
119
  # Load models
120
  vae = load_vae(vae_dir)
121
  unet = load_unet(unet_dir)
122
  scheduler = load_scheduler(scheduler_dir)
 
 
123
  patchifier = SymmetricPatchifier(patch_size=1)
124
+ text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(
125
+ "cuda")
126
+ tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
127
 
128
  # Use submodels for the pipeline
129
  submodel_dict = {
130
+ "transformer": unet,
131
  "patchifier": patchifier,
132
+ "text_encoder": text_encoder,
133
+ "tokenizer": tokenizer,
134
  "scheduler": scheduler,
135
  "vae": vae,
136
  }
137
 
138
+ pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda")
139
+
140
+ # Load media (video or image)
141
+ if args.video_path:
142
+ media_items = load_video_to_tensor_with_resize(args.video_path, args.height, args.width).unsqueeze(0)
143
+ elif args.image_path:
144
+ media_items = load_image_to_tensor_with_resize(args.image_path, args.height, args.width)
145
+ else:
146
+ raise ValueError("Either --video_path or --image_path must be provided.")
147
+
148
+ # Prepare input for the pipeline
149
+ sample = {
150
+ "prompt": args.prompt,
151
+ 'prompt_attention_mask': None,
152
+ 'negative_prompt': args.negative_prompt,
153
+ 'negative_prompt_attention_mask': None,
154
+ 'media_items': media_items,
155
+ }
156
 
157
+ generator = torch.Generator(device="cpu").manual_seed(args.seed)
158
 
159
+ # Run the pipeline
160
  images = pipeline(
161
+ num_inference_steps=args.num_inference_steps,
162
+ num_images_per_prompt=args.num_images_per_prompt,
163
+ guidance_scale=args.guidance_scale,
164
+ generator=generator,
165
  output_type="pt",
166
  callback_on_step_end=None,
167
+ height=args.height,
168
+ width=args.width,
169
+ num_frames=args.num_frames,
170
+ frame_rate=args.frame_rate,
171
  **sample,
172
  is_video=True,
173
  vae_per_channel_normalize=True,
174
+ conditioning_method=ConditioningMethod.FIRST_FRAME
175
  ).images
176
 
177
+ # Save output video
178
+ for i in range(images.shape[0]):
179
+ video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
180
+ video_np = (video_np * 255).astype(np.uint8)
181
+ fps = args.frame_rate
182
+ height, width = video_np.shape[1:3]
183
+ filename = lambda base, ext, dir='.': next(
184
+ os.path.join(dir, f"{base}_{i}{ext}") for i in range(1000) if
185
+ not os.path.exists(os.path.join(dir, f"{base}_{i}{ext}")))
186
+ out = cv2.VideoWriter(filename(f"video_output_{i}", ".mp4", "."), cv2.VideoWriter_fourcc(*'mp4v'), fps,
187
+ (width, height))
188
+ for frame in video_np[..., ::-1]:
189
+ out.write(frame)
190
+ out.release()
191
+
192
 
193
  if __name__ == "__main__":
194
  main()