|
import inspect |
|
from importlib import import_module |
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU |
|
from diffusers.models.attention import _chunked_feed_forward |
|
from diffusers.models.attention_processor import ( |
|
LoRAAttnAddedKVProcessor, |
|
LoRAAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
SpatialNorm, |
|
) |
|
from diffusers.models.lora import LoRACompatibleLinear |
|
from diffusers.models.normalization import RMSNorm |
|
from diffusers.utils import deprecate, logging |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from einops import rearrange |
|
from torch import nn |
|
|
|
try: |
|
from torch_xla.experimental.custom_kernel import flash_attention |
|
except ImportError: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@maybe_allow_in_graph |
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
qk_norm (`str`, *optional*, defaults to None): |
|
Set to 'layer_norm' or `rms_norm` to perform query and key normalization. |
|
adaptive_norm (`str`, *optional*, defaults to `"single_scale_shift"`): |
|
The type of adaptive norm to use. Can be `"single_scale_shift"`, `"single_scale"` or "none". |
|
standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): |
|
The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
adaptive_norm: str = "single_scale_shift", |
|
standardization_norm: str = "layer_norm", |
|
norm_eps: float = 1e-5, |
|
qk_norm: Optional[str] = None, |
|
final_dropout: bool = False, |
|
attention_type: str = "default", |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
use_tpu_flash_attention: bool = False, |
|
use_rope: bool = False, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
self.use_tpu_flash_attention = use_tpu_flash_attention |
|
self.adaptive_norm = adaptive_norm |
|
|
|
assert standardization_norm in ["layer_norm", "rms_norm"] |
|
assert adaptive_norm in ["single_scale_shift", "single_scale", "none"] |
|
|
|
make_norm_layer = ( |
|
nn.LayerNorm if standardization_norm == "layer_norm" else RMSNorm |
|
) |
|
|
|
|
|
|
|
self.norm1 = make_norm_layer( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
use_tpu_flash_attention=use_tpu_flash_attention, |
|
qk_norm=qk_norm, |
|
use_rope=use_rope, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=( |
|
cross_attention_dim if not double_self_attention else None |
|
), |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
use_tpu_flash_attention=use_tpu_flash_attention, |
|
qk_norm=qk_norm, |
|
use_rope=use_rope, |
|
) |
|
|
|
if adaptive_norm == "none": |
|
self.attn2_norm = make_norm_layer( |
|
dim, norm_eps, norm_elementwise_affine |
|
) |
|
else: |
|
self.attn2 = None |
|
self.attn2_norm = None |
|
|
|
self.norm2 = make_norm_layer(dim, norm_eps, norm_elementwise_affine) |
|
|
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
|
|
if adaptive_norm != "none": |
|
num_ada_params = 4 if adaptive_norm == "single_scale" else 6 |
|
self.scale_shift_table = nn.Parameter( |
|
torch.randn(num_ada_params, dim) / dim**0.5 |
|
) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_use_tpu_flash_attention(self, device): |
|
r""" |
|
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU |
|
attention kernel. |
|
""" |
|
if device == "xla": |
|
self.use_tpu_flash_attention = True |
|
self.attn1.set_use_tpu_flash_attention(device) |
|
self.attn2.set_use_tpu_flash_attention(device) |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
) -> torch.FloatTensor: |
|
if cross_attention_kwargs is not None: |
|
if cross_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored." |
|
) |
|
|
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
if self.adaptive_norm in ["single_scale_shift", "single_scale"]: |
|
assert timestep.ndim == 3 |
|
num_ada_params = self.scale_shift_table.shape[0] |
|
ada_values = self.scale_shift_table[None, None] + timestep.reshape( |
|
batch_size, timestep.shape[1], num_ada_params, -1 |
|
) |
|
if self.adaptive_norm == "single_scale_shift": |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
ada_values.unbind(dim=2) |
|
) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
else: |
|
scale_msa, gate_msa, scale_mlp, gate_mlp = ada_values.unbind(dim=2) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) |
|
elif self.adaptive_norm == "none": |
|
scale_msa, gate_msa, scale_mlp, gate_mlp = None, None, None, None |
|
else: |
|
raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}") |
|
|
|
norm_hidden_states = norm_hidden_states.squeeze( |
|
1 |
|
) |
|
|
|
|
|
cross_attention_kwargs = ( |
|
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
freqs_cis=freqs_cis, |
|
encoder_hidden_states=( |
|
encoder_hidden_states if self.only_cross_attention else None |
|
), |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if gate_msa is not None: |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if self.attn2 is not None: |
|
if self.adaptive_norm == "none": |
|
attn_input = self.attn2_norm(hidden_states) |
|
else: |
|
attn_input = hidden_states |
|
attn_output = self.attn2( |
|
attn_input, |
|
freqs_cis=freqs_cis, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
if self.adaptive_norm == "single_scale_shift": |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
elif self.adaptive_norm == "single_scale": |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) |
|
elif self.adaptive_norm == "none": |
|
pass |
|
else: |
|
raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}") |
|
|
|
if self._chunk_size is not None: |
|
|
|
ff_output = _chunked_feed_forward( |
|
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size |
|
) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
if gate_mlp is not None: |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
class Attention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): |
|
The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): |
|
The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): |
|
The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
upcast_attention (`bool`, *optional*, defaults to False): |
|
Set to `True` to upcast the attention computation to `float32`. |
|
upcast_softmax (`bool`, *optional*, defaults to False): |
|
Set to `True` to upcast the softmax computation to `float32`. |
|
cross_attention_norm (`str`, *optional*, defaults to `None`): |
|
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. |
|
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use for the group norm in the cross attention. |
|
added_kv_proj_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels to use for the added key and value projections. If `None`, no projection is used. |
|
norm_num_groups (`int`, *optional*, defaults to `None`): |
|
The number of groups to use for the group norm in the attention. |
|
spatial_norm_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels to use for the spatial normalization. |
|
out_bias (`bool`, *optional*, defaults to `True`): |
|
Set to `True` to use a bias in the output linear layer. |
|
scale_qk (`bool`, *optional*, defaults to `True`): |
|
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. |
|
qk_norm (`str`, *optional*, defaults to None): |
|
Set to 'layer_norm' or `rms_norm` to perform query and key normalization. |
|
only_cross_attention (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if |
|
`added_kv_proj_dim` is not `None`. |
|
eps (`float`, *optional*, defaults to 1e-5): |
|
An additional value added to the denominator in group normalization that is used for numerical stability. |
|
rescale_output_factor (`float`, *optional*, defaults to 1.0): |
|
A factor to rescale the output by dividing it with this value. |
|
residual_connection (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to add the residual connection to the output. |
|
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): |
|
Set to `True` if the attention block is loaded from a deprecated state dict. |
|
processor (`AttnProcessor`, *optional*, defaults to `None`): |
|
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and |
|
`AttnProcessor` otherwise. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias: bool = False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
cross_attention_norm_num_groups: int = 32, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
spatial_norm_dim: Optional[int] = None, |
|
out_bias: bool = True, |
|
scale_qk: bool = True, |
|
qk_norm: Optional[str] = None, |
|
only_cross_attention: bool = False, |
|
eps: float = 1e-5, |
|
rescale_output_factor: float = 1.0, |
|
residual_connection: bool = False, |
|
_from_deprecated_attn_block: bool = False, |
|
processor: Optional["AttnProcessor"] = None, |
|
out_dim: int = None, |
|
use_tpu_flash_attention: bool = False, |
|
use_rope: bool = False, |
|
): |
|
super().__init__() |
|
self.inner_dim = out_dim if out_dim is not None else dim_head * heads |
|
self.query_dim = query_dim |
|
self.use_bias = bias |
|
self.is_cross_attention = cross_attention_dim is not None |
|
self.cross_attention_dim = ( |
|
cross_attention_dim if cross_attention_dim is not None else query_dim |
|
) |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.rescale_output_factor = rescale_output_factor |
|
self.residual_connection = residual_connection |
|
self.dropout = dropout |
|
self.fused_projections = False |
|
self.out_dim = out_dim if out_dim is not None else query_dim |
|
self.use_tpu_flash_attention = use_tpu_flash_attention |
|
self.use_rope = use_rope |
|
|
|
|
|
|
|
self._from_deprecated_attn_block = _from_deprecated_attn_block |
|
|
|
self.scale_qk = scale_qk |
|
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 |
|
|
|
if qk_norm is None: |
|
self.q_norm = nn.Identity() |
|
self.k_norm = nn.Identity() |
|
elif qk_norm == "rms_norm": |
|
self.q_norm = RMSNorm(dim_head * heads, eps=1e-5) |
|
self.k_norm = RMSNorm(dim_head * heads, eps=1e-5) |
|
elif qk_norm == "layer_norm": |
|
self.q_norm = nn.LayerNorm(dim_head * heads, eps=1e-5) |
|
self.k_norm = nn.LayerNorm(dim_head * heads, eps=1e-5) |
|
else: |
|
raise ValueError(f"Unsupported qk_norm method: {qk_norm}") |
|
|
|
self.heads = out_dim // dim_head if out_dim is not None else heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
self.only_cross_attention = only_cross_attention |
|
|
|
if self.added_kv_proj_dim is None and self.only_cross_attention: |
|
raise ValueError( |
|
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." |
|
) |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm( |
|
num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True |
|
) |
|
else: |
|
self.group_norm = None |
|
|
|
if spatial_norm_dim is not None: |
|
self.spatial_norm = SpatialNorm( |
|
f_channels=query_dim, zq_channels=spatial_norm_dim |
|
) |
|
else: |
|
self.spatial_norm = None |
|
|
|
if cross_attention_norm is None: |
|
self.norm_cross = None |
|
elif cross_attention_norm == "layer_norm": |
|
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) |
|
elif cross_attention_norm == "group_norm": |
|
if self.added_kv_proj_dim is not None: |
|
|
|
|
|
|
|
|
|
|
|
norm_cross_num_channels = added_kv_proj_dim |
|
else: |
|
norm_cross_num_channels = self.cross_attention_dim |
|
|
|
self.norm_cross = nn.GroupNorm( |
|
num_channels=norm_cross_num_channels, |
|
num_groups=cross_attention_norm_num_groups, |
|
eps=1e-5, |
|
affine=True, |
|
) |
|
else: |
|
raise ValueError( |
|
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" |
|
) |
|
|
|
linear_cls = nn.Linear |
|
|
|
self.linear_cls = linear_cls |
|
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) |
|
|
|
if not self.only_cross_attention: |
|
|
|
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) |
|
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) |
|
else: |
|
self.to_k = None |
|
self.to_v = None |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) |
|
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
|
|
|
if processor is None: |
|
processor = AttnProcessor2_0() |
|
self.set_processor(processor) |
|
|
|
def set_use_tpu_flash_attention(self, device_type): |
|
r""" |
|
Function sets the flag in this object. The flag will enforce the usage of TPU attention kernel. |
|
""" |
|
if device_type == "xla": |
|
self.use_tpu_flash_attention = True |
|
|
|
def set_processor(self, processor: "AttnProcessor") -> None: |
|
r""" |
|
Set the attention processor to use. |
|
|
|
Args: |
|
processor (`AttnProcessor`): |
|
The attention processor to use. |
|
""" |
|
|
|
|
|
if ( |
|
hasattr(self, "processor") |
|
and isinstance(self.processor, torch.nn.Module) |
|
and not isinstance(processor, torch.nn.Module) |
|
): |
|
logger.info( |
|
f"You are removing possibly trained weights of {self.processor} with {processor}" |
|
) |
|
self._modules.pop("processor") |
|
|
|
self.processor = processor |
|
|
|
def get_processor( |
|
self, return_deprecated_lora: bool = False |
|
) -> "AttentionProcessor": |
|
r""" |
|
Get the attention processor in use. |
|
|
|
Args: |
|
return_deprecated_lora (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to return the deprecated LoRA attention processor. |
|
|
|
Returns: |
|
"AttentionProcessor": The attention processor in use. |
|
""" |
|
if not return_deprecated_lora: |
|
return self.processor |
|
|
|
|
|
|
|
|
|
is_lora_activated = { |
|
name: module.lora_layer is not None |
|
for name, module in self.named_modules() |
|
if hasattr(module, "lora_layer") |
|
} |
|
|
|
|
|
if not any(is_lora_activated.values()): |
|
return self.processor |
|
|
|
|
|
is_lora_activated.pop("add_k_proj", None) |
|
is_lora_activated.pop("add_v_proj", None) |
|
|
|
if not all(is_lora_activated.values()): |
|
raise ValueError( |
|
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" |
|
) |
|
|
|
|
|
non_lora_processor_cls_name = self.processor.__class__.__name__ |
|
lora_processor_cls = getattr( |
|
import_module(__name__), "LoRA" + non_lora_processor_cls_name |
|
) |
|
|
|
hidden_size = self.inner_dim |
|
|
|
|
|
if lora_processor_cls in [ |
|
LoRAAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
]: |
|
kwargs = { |
|
"cross_attention_dim": self.cross_attention_dim, |
|
"rank": self.to_q.lora_layer.rank, |
|
"network_alpha": self.to_q.lora_layer.network_alpha, |
|
"q_rank": self.to_q.lora_layer.rank, |
|
"q_hidden_size": self.to_q.lora_layer.out_features, |
|
"k_rank": self.to_k.lora_layer.rank, |
|
"k_hidden_size": self.to_k.lora_layer.out_features, |
|
"v_rank": self.to_v.lora_layer.rank, |
|
"v_hidden_size": self.to_v.lora_layer.out_features, |
|
"out_rank": self.to_out[0].lora_layer.rank, |
|
"out_hidden_size": self.to_out[0].lora_layer.out_features, |
|
} |
|
|
|
if hasattr(self.processor, "attention_op"): |
|
kwargs["attention_op"] = self.processor.attention_op |
|
|
|
lora_processor = lora_processor_cls(hidden_size, **kwargs) |
|
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) |
|
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) |
|
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) |
|
lora_processor.to_out_lora.load_state_dict( |
|
self.to_out[0].lora_layer.state_dict() |
|
) |
|
elif lora_processor_cls == LoRAAttnAddedKVProcessor: |
|
lora_processor = lora_processor_cls( |
|
hidden_size, |
|
cross_attention_dim=self.add_k_proj.weight.shape[0], |
|
rank=self.to_q.lora_layer.rank, |
|
network_alpha=self.to_q.lora_layer.network_alpha, |
|
) |
|
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) |
|
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) |
|
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) |
|
lora_processor.to_out_lora.load_state_dict( |
|
self.to_out[0].lora_layer.state_dict() |
|
) |
|
|
|
|
|
if self.add_k_proj.lora_layer is not None: |
|
lora_processor.add_k_proj_lora.load_state_dict( |
|
self.add_k_proj.lora_layer.state_dict() |
|
) |
|
lora_processor.add_v_proj_lora.load_state_dict( |
|
self.add_v_proj.lora_layer.state_dict() |
|
) |
|
else: |
|
lora_processor.add_k_proj_lora = None |
|
lora_processor.add_v_proj_lora = None |
|
else: |
|
raise ValueError(f"{lora_processor_cls} does not exist.") |
|
|
|
return lora_processor |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**cross_attention_kwargs, |
|
) -> torch.Tensor: |
|
r""" |
|
The forward method of the `Attention` class. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
The hidden states of the query. |
|
encoder_hidden_states (`torch.Tensor`, *optional*): |
|
The hidden states of the encoder. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention mask to use. If `None`, no mask is applied. |
|
**cross_attention_kwargs: |
|
Additional keyword arguments to pass along to the cross attention. |
|
|
|
Returns: |
|
`torch.Tensor`: The output of the attention layer. |
|
""" |
|
|
|
|
|
|
|
|
|
attn_parameters = set( |
|
inspect.signature(self.processor.__call__).parameters.keys() |
|
) |
|
unused_kwargs = [ |
|
k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters |
|
] |
|
if len(unused_kwargs) > 0: |
|
logger.warning( |
|
f"cross_attention_kwargs {unused_kwargs} are not expected by" |
|
f" {self.processor.__class__.__name__} and will be ignored." |
|
) |
|
cross_attention_kwargs = { |
|
k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters |
|
} |
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
freqs_cis=freqs_cis, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` |
|
is the number of heads initialized while constructing the `Attention` class. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): The tensor to reshape. |
|
|
|
Returns: |
|
`torch.Tensor`: The reshaped tensor. |
|
""" |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape( |
|
batch_size // head_size, seq_len, dim * head_size |
|
) |
|
return tensor |
|
|
|
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: |
|
r""" |
|
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is |
|
the number of heads initialized while constructing the `Attention` class. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): The tensor to reshape. |
|
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is |
|
reshaped to `[batch_size * heads, seq_len, dim // heads]`. |
|
|
|
Returns: |
|
`torch.Tensor`: The reshaped tensor. |
|
""" |
|
|
|
head_size = self.heads |
|
if tensor.ndim == 3: |
|
batch_size, seq_len, dim = tensor.shape |
|
extra_dim = 1 |
|
else: |
|
batch_size, extra_dim, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape( |
|
batch_size, seq_len * extra_dim, head_size, dim // head_size |
|
) |
|
tensor = tensor.permute(0, 2, 1, 3) |
|
|
|
if out_dim == 3: |
|
tensor = tensor.reshape( |
|
batch_size * head_size, seq_len * extra_dim, dim // head_size |
|
) |
|
|
|
return tensor |
|
|
|
def get_attention_scores( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
attention_mask: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
r""" |
|
Compute the attention scores. |
|
|
|
Args: |
|
query (`torch.Tensor`): The query tensor. |
|
key (`torch.Tensor`): The key tensor. |
|
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. |
|
|
|
Returns: |
|
`torch.Tensor`: The attention probabilities/scores. |
|
""" |
|
dtype = query.dtype |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], |
|
query.shape[1], |
|
key.shape[1], |
|
dtype=query.dtype, |
|
device=query.device, |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
del baddbmm_input |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
del attention_scores |
|
|
|
attention_probs = attention_probs.to(dtype) |
|
|
|
return attention_probs |
|
|
|
def prepare_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
target_length: int, |
|
batch_size: int, |
|
out_dim: int = 3, |
|
) -> torch.Tensor: |
|
r""" |
|
Prepare the attention mask for the attention computation. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
The attention mask to prepare. |
|
target_length (`int`): |
|
The target length of the attention mask. This is the length of the attention mask after padding. |
|
batch_size (`int`): |
|
The batch size, which is used to repeat the attention mask. |
|
out_dim (`int`, *optional*, defaults to `3`): |
|
The output dimension of the attention mask. Can be either `3` or `4`. |
|
|
|
Returns: |
|
`torch.Tensor`: The prepared attention mask. |
|
""" |
|
head_size = self.heads |
|
if attention_mask is None: |
|
return attention_mask |
|
|
|
current_length: int = attention_mask.shape[-1] |
|
if current_length != target_length: |
|
if attention_mask.device.type == "mps": |
|
|
|
|
|
padding_shape = ( |
|
attention_mask.shape[0], |
|
attention_mask.shape[1], |
|
target_length, |
|
) |
|
padding = torch.zeros( |
|
padding_shape, |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
attention_mask = torch.cat([attention_mask, padding], dim=2) |
|
else: |
|
|
|
|
|
|
|
|
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
|
|
if out_dim == 3: |
|
if attention_mask.shape[0] < batch_size * head_size: |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) |
|
elif out_dim == 4: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) |
|
|
|
return attention_mask |
|
|
|
def norm_encoder_hidden_states( |
|
self, encoder_hidden_states: torch.Tensor |
|
) -> torch.Tensor: |
|
r""" |
|
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the |
|
`Attention` class. |
|
|
|
Args: |
|
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. |
|
|
|
Returns: |
|
`torch.Tensor`: The normalized encoder hidden states. |
|
""" |
|
assert ( |
|
self.norm_cross is not None |
|
), "self.norm_cross must be defined to call self.norm_encoder_hidden_states" |
|
|
|
if isinstance(self.norm_cross, nn.LayerNorm): |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
elif isinstance(self.norm_cross, nn.GroupNorm): |
|
|
|
|
|
|
|
|
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
else: |
|
assert False |
|
|
|
return encoder_hidden_states |
|
|
|
@staticmethod |
|
def apply_rotary_emb( |
|
input_tensor: torch.Tensor, |
|
freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
cos_freqs = freqs_cis[0] |
|
sin_freqs = freqs_cis[1] |
|
|
|
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) |
|
t1, t2 = t_dup.unbind(dim=-1) |
|
t_dup = torch.stack((-t2, t1), dim=-1) |
|
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") |
|
|
|
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs |
|
|
|
return out |
|
|
|
|
|
class AttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor], |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view( |
|
batch_size, channel, height * width |
|
).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
|
|
if (attention_mask is not None) and (not attn.use_tpu_flash_attention): |
|
attention_mask = attn.prepare_attention_mask( |
|
attention_mask, sequence_length, batch_size |
|
) |
|
|
|
|
|
attention_mask = attention_mask.view( |
|
batch_size, attn.heads, -1, attention_mask.shape[-1] |
|
) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
query = attn.to_q(hidden_states) |
|
query = attn.q_norm(query) |
|
|
|
if encoder_hidden_states is not None: |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states( |
|
encoder_hidden_states |
|
) |
|
key = attn.to_k(encoder_hidden_states) |
|
key = attn.k_norm(key) |
|
else: |
|
encoder_hidden_states = hidden_states |
|
key = attn.to_k(hidden_states) |
|
key = attn.k_norm(key) |
|
if attn.use_rope: |
|
key = attn.apply_rotary_emb(key, freqs_cis) |
|
query = attn.apply_rotary_emb(query, freqs_cis) |
|
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
if attn.use_tpu_flash_attention: |
|
q_segment_indexes = None |
|
if ( |
|
attention_mask is not None |
|
): |
|
|
|
attention_mask = attention_mask.to(torch.float32) |
|
q_segment_indexes = torch.ones( |
|
batch_size, query.shape[2], device=query.device, dtype=torch.float32 |
|
) |
|
assert ( |
|
attention_mask.shape[1] == key.shape[2] |
|
), f"ERROR: KEY SHAPE must be same as attention mask [{key.shape[2]}, {attention_mask.shape[1]}]" |
|
|
|
assert ( |
|
query.shape[2] % 128 == 0 |
|
), f"ERROR: QUERY SHAPE must be divisible by 128 (TPU limitation) [{query.shape[2]}]" |
|
assert ( |
|
key.shape[2] % 128 == 0 |
|
), f"ERROR: KEY SHAPE must be divisible by 128 (TPU limitation) [{key.shape[2]}]" |
|
|
|
|
|
hidden_states = flash_attention( |
|
q=query, |
|
k=key, |
|
v=value, |
|
q_segment_ids=q_segment_indexes, |
|
kv_segment_ids=attention_mask, |
|
sm_scale=attn.scale, |
|
) |
|
else: |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=attention_mask, |
|
dropout_p=0.0, |
|
is_causal=False, |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
batch_size, -1, attn.heads * head_dim |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
batch_size, channel, height, width |
|
) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor: |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view( |
|
batch_size, channel, height * width |
|
).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask( |
|
attention_mask, sequence_length, batch_size |
|
) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states( |
|
encoder_hidden_states |
|
) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
query = attn.q_norm(query) |
|
key = attn.k_norm(key) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
batch_size, channel, height, width |
|
) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
inner_dim=None, |
|
bias: bool = True, |
|
): |
|
super().__init__() |
|
if inner_dim is None: |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
linear_cls = nn.Linear |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) |
|
else: |
|
raise ValueError(f"Unsupported activation function: {activation_fn}") |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(linear_cls(inner_dim, dim_out, bias=bias)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: |
|
compatible_cls = (GEGLU, LoRACompatibleLinear) |
|
for module in self.net: |
|
if isinstance(module, compatible_cls): |
|
hidden_states = module(hidden_states, scale) |
|
else: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|