import gradio as gr import torch import os import uuid from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_video from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') # Constants bases = { "ToonYou": "frankjoshua/toonyou_beta6", "epiCRealism": "emilianJR/epiCRealism" } step_loaded = None base_loaded = "epiCRealism" motion_loaded = None # Ensure model and scheduler are initialized in GPU-enabled function if not torch.cuda.is_available(): raise NotImplementedError("No GPU detected!") device = "cuda" dtype = torch.float16 pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") def generate_image(secret_token, prompt, base, motion, step): if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') global step_loaded global base_loaded global motion_loaded # print(prompt, base, step) if step_loaded != step: repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) step_loaded = step if base_loaded != base: pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) base_loaded = base if motion_loaded != motion: pipe.unload_lora_weights() if motion != "": pipe.load_lora_weights(motion, adapter_name="motion") pipe.set_adapters(["motion"], [0.7]) motion_loaded = motion progress((0, step)) def progress_callback(i, t, z): progress((i+1, step)) output = pipe( prompt=prompt, # this corresponds roughly to 16:9 # which is the aspect ratio video used by AiTube width=912, # 1024, height=512, # 576, guidance_scale=1.0, num_inference_steps=step, callback=progress_callback, callback_steps=1 ) name = str(uuid.uuid4()).replace("-", "") path = f"/tmp/{name}.mp4" # I think we are looking time here too, converting to mp4 is too slow, we should return # the frames unencoded to the frontend renderer export_to_video(output.frames[0], path, fps=10) # Read the content of the video file and encode it to base64 with open(path, "rb") as video_file: video_base64 = base64.b64encode(video_file.read()).decode('utf-8') # Prepend the appropriate data URI header with MIME type video_data_uri = 'data:video/mp4;base64,' + video_base64 # clean-up (otherwise there is always a risk of "ghosting", eg. someone seeing the previous generated video", # of one of the steps go wrong) os.remove(path) return video_data_uri # Gradio Interface with gr.Blocks() as demo: gr.HTML("""
This space is a REST API to programmatically generate MP4 videos for AiTube, the next generation video platform.
Interested in using it? Look no further than the original space!