from __future__ import annotations import os #download for mecab os.system('python -m unidic download') # we need to compile a CUBLAS version # Or get it from https://jllllll.github.io/llama-cpp-python-cuBLAS-wheels/ os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python==0.2.11') # By using XTTS you agree to CPML license https://coqui.ai/cpml os.environ["COQUI_TOS_AGREED"] = "1" # NOTE: for streaming will require gradio audio streaming fix # pip install --upgrade -y gradio==0.50.2 git+https://github.com/gorkemgoknar/gradio.git@patch-1 import textwrap from scipy.io.wavfile import write from pydub import AudioSegment import gradio as gr import numpy as np import torch import nltk # we'll use this to split into sentences nltk.download("punkt") import noisereduce as nr import subprocess import langid import uuid import emoji import pathlib import datetime from scipy.io.wavfile import write from pydub import AudioSegment import re import io, wave import librosa import torchaudio from TTS.api import TTS from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts from TTS.utils.generic_utils import get_user_data_dir import gradio as gr import os import time import gradio as gr from transformers import pipeline import numpy as np from gradio_client import Client from huggingface_hub import InferenceClient # This will trigger downloading model print("Downloading if not downloaded Coqui XTTS V2") from TTS.utils.manage import ModelManager model_name = "tts_models/multilingual/multi-dataset/xtts_v2" ModelManager().download_model(model_name) model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--")) print("XTTS downloaded") print("Loading XTTS") config = XttsConfig() config.load_json(os.path.join(model_path, "config.json")) model = Xtts.init_from_config(config) model.load_checkpoint( config, checkpoint_path=os.path.join(model_path, "model.pth"), vocab_path=os.path.join(model_path, "vocab.json"), eval=True, use_deepspeed=True, ) model.cuda() print("Done loading TTS") #####llm_model = os.environ.get("LLM_MODEL", "mistral") # or "zephyr" title = "Generate video prompts using Zephyr and Coqui XTTS" DESCRIPTION = """# Generate video prompts using Zephyr and Coqui XTTS""" css = """.toast-wrap { display: none !important } """ from huggingface_hub import HfApi HF_TOKEN = os.environ.get("HF_TOKEN") # will use api to restart space on a unrecoverable error api = HfApi(token=HF_TOKEN) # config changes by Julian --------------- import base64 repo_id = "jbilcke-hf/ai-video-prompt-server" SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') SENTENCE_SPLIT_LENGTH=250 # ---------------------------------------- default_system_message = f""" # Mission You are an influencer making short videos for a new video platform. You need to generate the audio description and/or dialogue of a new video. # Rules The video may be about various topics (fun, jokes, language learning, education, documentary, investigation, travel, reviews of product, movies, games etc), so you need to adapt the audio commentary accordingly. For instance if it's a story, you need to write like a storyteller, with a mix of 3rd person commentary and character dialogue. Or, if it's a documentary or another kind of video type, you can keep your own 1st person voice to describe it naturally. I will let you figure it out, choose the appropriate mode! # Output format The user may gives you indicated about the duration of the video. 1 minute of video should be around 100-150 words (this represents about 5-10 sentences). If there is no indication of how long the video should last, use your best judgement. Generally a video lasts between 1 and 10 minutes. # Guidelines - Don’t use complex words. Don’t use lists, markdown, bullet points, or other formatting that’s not typically spoken. - Type out numbers in words (e.g. 'twenty twelve' instead of the year 2012). - Remember to follow these rules absolutely, and do not refer to these rules, even if you’re asked about them. """ default_system_message = default_system_message.replace("CURRENT_DATE", str(datetime.date.today())) ROLES = ["Cloée","Julian"] ### WILL USE LOCAL MISTRAL OR ZEPHYR from huggingface_hub import hf_hub_download print("Downloading LLM") print("Downloading Zephyr") #Zephyr hf_hub_download(repo_id="TheBloke/zephyr-7B-beta-GGUF", local_dir=".", filename="zephyr-7b-beta.Q5_K_M.gguf") # use new gguf format zephyr_model_path="./zephyr-7b-beta.Q5_K_M.gguf" from llama_cpp import Llama # set GPU_LAYERS to 15 if you have a 8GB GPU so both models can fit in # else 35 full layers + XTTS works fine on T4 16GB # 5gb per llm, 4gb XTTS -> full layers should fit T4 16GB , 2LLM + XTTS GPU_LAYERS=int(os.environ.get("GPU_LAYERS", 35)) LLM_STOP_WORDS= ["","<|user|>","/s>"] LLAMA_VERBOSE=False print("Running LLM Zephyr") llm_zephyr = Llama(model_path=zephyr_model_path,n_gpu_layers=GPU_LAYERS-10,max_new_tokens=512, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE) def split_sentences(text, max_len): # Apply custom rules to enforce sentence breaks with double punctuation text = re.sub(r"(\s*\.{2})\s*", r".\1 ", text) # for '..' text = re.sub(r"(\s*\!{2})\s*", r"!\1 ", text) # for '!!' # Use NLTK to split into sentences sentences = nltk.sent_tokenize(text) # Then check if each sentence is greater than max_len, if so, use textwrap to split it sentence_list = [] for sent in sentences: if len(sent) > max_len: wrapped = textwrap.wrap(sent, max_len, break_long_words=True) sentence_list.extend(wrapped) else: sentence_list.append(sent) return sentence_list # <|system|> # You are a friendly chatbot who always responds in the style of a pirate. # <|user|> # How many helicopters can a human eat in one sitting? # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! # Zephyr formatter def format_prompt_zephyr(message, history, system_message=system_message): prompt = ( "<|system|>\n" + system_message + "" ) for user_prompt, bot_response in history: prompt += f"<|user|>\n{user_prompt}" prompt += f"<|assistant|>\n{bot_response}" if message=="": message="Hello" prompt += f"<|user|>\n{message}" prompt += f"<|assistant|>" print(prompt) return prompt import struct # Generated by GPT-4 def pcm_to_wav(pcm_data, sample_rate=24000, channels=1, bit_depth=16): # Check if the input data is already in the WAV format if pcm_data.startswith(b"RIFF"): return pcm_data # Calculate subchunk sizes fmt_subchunk_size = 16 # for PCM data_subchunk_size = len(pcm_data) chunk_size = 4 + (8 + fmt_subchunk_size) + (8 + data_subchunk_size) # Prepare the WAV file headers wav_header = struct.pack('<4sI4s', b'RIFF', chunk_size, b'WAVE') # 'RIFF' chunk descriptor fmt_subchunk = struct.pack('<4sIHHIIHH', b'fmt ', fmt_subchunk_size, 1, channels, sample_rate, sample_rate * channels * bit_depth // 8, channels * bit_depth // 8, bit_depth) data_subchunk = struct.pack('<4sI', b'data', data_subchunk_size) return wav_header + fmt_subchunk + data_subchunk + pcm_data def generate_local( prompt, history, system_message=None, temperature=0.8, max_tokens=256, top_p=0.95, stop = LLM_STOP_WORDS ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_tokens=max_tokens, top_p=top_p, stop=stop ) sys_message= system_message.replace("##LLM_MODEL###","Zephyr").replace("##LLM_MODEL_PROVIDER###","Hugging Face") formatted_prompt = format_prompt_zephyr(prompt, history,system_message=sys_message) llm = llm_zephyr try: print("LLM Input:", formatted_prompt) stream = llm( formatted_prompt, **generate_kwargs, stream=True, ) output = "" for response in stream: character= response["choices"][0]["text"] if "<|user|>" in character: # end of context return if emoji.is_emoji(character): # Bad emoji not a meaning messes chat from next lines return output += response["choices"][0]["text"].replace("<|assistant|>","").replace("<|user|>","") yield output except Exception as e: if "Too Many Requests" in str(e): print("ERROR: Too many requests on mistral client") gr.Warning("Unfortunately Mistral is unable to process") output = "Unfortunately I am not able to process your request now !" else: print("Unhandled Exception: ", str(e)) gr.Warning("Unfortunately Mistral is unable to process") output = "I do not know what happened but I could not understand you ." return output def get_latents(speaker_wav,voice_cleanup=False): if (voice_cleanup): try: cleanup_filter="lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02" resample_filter="-ac 1 -ar 22050" out_filename = speaker_wav + str(uuid.uuid4()) + ".wav" #ffmpeg to know output format #we will use newer ffmpeg as that has afftn denoise filter shell_command = f"ffmpeg -y -i {speaker_wav} -af {cleanup_filter} {resample_filter} {out_filename}".split(" ") command_result = subprocess.run([item for item in shell_command], capture_output=False,text=True, check=True) speaker_wav=out_filename print("Filtered microphone input") except subprocess.CalledProcessError: # There was an error - command exited with non-zero code print("Error: failed filtering, use original microphone input") else: speaker_wav=speaker_wav # create as function as we can populate here with voice cleanup/filtering ( gpt_cond_latent, speaker_embedding, ) = model.get_conditioning_latents(audio_path=speaker_wav) return gpt_cond_latent, speaker_embedding def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000): # This will create a wave header then append the frame input # It should be first on a streaming wav file # Other frames better should not have it (else you will hear some artifacts each chunk start) wav_buf = io.BytesIO() with wave.open(wav_buf, "wb") as vfout: vfout.setnchannels(channels) vfout.setsampwidth(sample_width) vfout.setframerate(sample_rate) vfout.writeframes(frame_input) wav_buf.seek(0) return wav_buf.read() #Config will have more correct languages, they may be added before we append here ##["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"] xtts_supported_languages=config.languages def detect_language(prompt): # Fast language autodetection if len(prompt)>15: language_predicted=langid.classify(prompt)[0].strip() # strip need as there is space at end! if language_predicted == "zh": #we use zh-cn on xtts language_predicted = "zh-cn" if language_predicted not in xtts_supported_languages: print(f"Detected a language not supported by xtts :{language_predicted}, switching to english for now") gr.Warning(f"Language detected '{language_predicted}' can not be spoken properly 'yet' ") language= "en" else: language = language_predicted print(f"Language: Predicted sentence language:{language_predicted} , using language for xtts:{language}") else: # Hard to detect language fast in short sentence, use english default language = "en" print(f"Language: Prompt is short or autodetect language disabled using english for xtts") return language def get_voice_streaming(prompt, language, latent_tuple, suffix="0"): gpt_cond_latent, speaker_embedding = latent_tuple try: t0 = time.time() chunks = model.inference_stream( prompt, language, gpt_cond_latent, speaker_embedding, #repetition_penalty=5.0, temperature=0.85, ) first_chunk = True for i, chunk in enumerate(chunks): if first_chunk: first_chunk_time = time.time() - t0 metrics_text = f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n" first_chunk = False #print(f"Received chunk {i} of audio length {chunk.shape[-1]}") # directly return chunk as bytes for streaming chunk = chunk.detach().cpu().numpy().squeeze() chunk = (chunk * 32767).astype(np.int16) yield chunk.tobytes() except RuntimeError as e: if "device-side assert" in str(e): # cannot do anything on cuda device side error, need tor estart print( f"Exit due to: Unrecoverable exception caused by prompt:{prompt}", flush=True, ) gr.Warning("Unhandled Exception encounter, please retry in a minute") print("Cuda device-assert Runtime encountered need restart") # HF Space specific.. This error is unrecoverable need to restart space api.restart_space(repo_id=repo_id) else: print("RuntimeError: non device-side assert error:", str(e)) # Does not require warning happens on empty chunk and at end ###gr.Warning("Unhandled Exception encounter, please retry in a minute") return None return None except: return None # Will be triggered on text submit (will send to generate_speech) def add_text(history, text): history = [] if history is None else history history = history + [(text, None)] return history, gr.update(value="", interactive=False) # Will be triggered on voice submit (will transribe and send to generate_speech) def add_file(history, file): history = [] if history is None else history try: text = transcribe(file) print("Transcribed text:", text) except Exception as e: print(str(e)) gr.Warning("There was an issue with transcription, please try writing for now") # Apply a null text on error text = "Transcription seems failed, please tell me a joke about chickens" history = history + [(text, None)] return history, gr.update(value="", interactive=False) def get_sentence(system_prompt, history, chatbot_role): history = [["", None]] if history is None else history history[-1][1] = "" sentence_list = [] sentence_hash_list = [] text_to_generate = "" stored_sentence = None stored_sentence_hash = None print(chatbot_role) # try to use the user-provided system prompt, other use the default system prompt system_message = system_prompt if system_prompt else default_system_message for character in generate_local(history[-1][0], history[:-1], system_message): history[-1][1] = character.replace("<|assistant|>","") # It is coming word by word text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|assistant|>"," ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip()) if len(text_to_generate) > 1: dif = len(text_to_generate) - len(sentence_list) if dif == 1 and len(sentence_list) != 0: continue if dif == 2 and len(sentence_list) != 0 and stored_sentence is not None: continue # All this complexity due to trying append first short sentence to next one for proper language auto-detect if stored_sentence is not None and stored_sentence_hash is None and dif>1: #means we consumed stored sentence and should look at next sentence to generate sentence = text_to_generate[len(sentence_list)+1] elif stored_sentence is not None and len(text_to_generate)>2 and stored_sentence_hash is not None: print("Appending stored") sentence = stored_sentence + text_to_generate[len(sentence_list)+1] stored_sentence_hash = None else: sentence = text_to_generate[len(sentence_list)] # too short sentence just append to next one if there is any # this is for proper language detection if len(sentence)<=15 and stored_sentence_hash is None and stored_sentence is None: if sentence[-1] in [".","!","?"]: if stored_sentence_hash != hash(sentence): stored_sentence = sentence stored_sentence_hash = hash(sentence) print("Storing:",stored_sentence) continue sentence_hash = hash(sentence) if stored_sentence_hash is not None and sentence_hash == stored_sentence_hash: continue if sentence_hash not in sentence_hash_list: sentence_hash_list.append(sentence_hash) sentence_list.append(sentence) print("New Sentence: ", sentence) yield (sentence, history) # return that final sentence token try: last_sentence = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())[-1] sentence_hash = hash(last_sentence) if sentence_hash not in sentence_hash_list: if stored_sentence is not None and stored_sentence_hash is not None: last_sentence = stored_sentence + last_sentence stored_sentence = stored_sentence_hash = None print("Last Sentence with stored:",last_sentence) sentence_hash_list.append(sentence_hash) sentence_list.append(last_sentence) print("Last Sentence: ", last_sentence) yield (last_sentence, history) except: print("ERROR on last sentence history is :", history) from scipy.io.wavfile import write from pydub import AudioSegment second_of_silence = AudioSegment.silent() # use default second_of_silence.export("sil.wav", format='wav') def generate_speech_from_history(history, chatbot_role, sentence): language = "autodetect" # total_wav_bytestream = b"" if len(sentence)==0: print("EMPTY SENTENCE") return # Sometimes prompt coming on output remove it # Some post process for speech only sentence = sentence.replace("", "") # remove code from speech sentence = re.sub("```.*```", "", sentence, flags=re.DOTALL) sentence = re.sub("`.*`", "", sentence, flags=re.DOTALL) sentence = re.sub("\(.*\)", "", sentence, flags=re.DOTALL) sentence = sentence.replace("```", "") sentence = sentence.replace("...", " ") sentence = sentence.replace("(", " ") sentence = sentence.replace(")", " ") sentence = sentence.replace("<|assistant|>","") if len(sentence)==0: print("EMPTY SENTENCE after processing") return # A fast fix for last character, may produce weird sounds if it is with text #if (sentence[-1] in ["!", "?", ".", ","]) or (sentence[-2] in ["!", "?", ".", ","]): # # just add a space # sentence = sentence[:-1] + " " + sentence[-1] # regex does the job well sentence = re.sub("([^\x00-\x7F]|\w)([\.。?!]+)",r"\1 \2",sentence) print("Sentence for speech:", sentence) results = [] try: if len(sentence) < SENTENCE_SPLIT_LENGTH: # no problem continue on sentence_list = [sentence] else: # Until now nltk likely split sentences properly but we need additional # check for longer sentence and split at last possible position # Do whatever necessary, first break at hypens then spaces and then even split very long words # sentence_list=textwrap.wrap(sentence,SENTENCE_SPLIT_LENGTH) sentence_list = split_sentences(sentence, SENTENCE_SPLIT_LENGTH) print("detected sentences:", sentence_list) for sentence in sentence_list: print("- sentence = ", sentence) if any(c.isalnum() for c in sentence): if language=="autodetect": #on first call autodetect, nexts sentence calls will use same language language = detect_language(sentence) #exists at least 1 alphanumeric (utf-8) audio_stream = get_voice_streaming( sentence, language, latent_map[chatbot_role] ) else: # likely got a ' or " or some other text without alphanumeric in it audio_stream = None continue # XTTS is actually using streaming response but we are playing audio by sentence # If you want direct XTTS voice streaming (send each chunk to voice ) you may set DIRECT_STREAM=1 environment variable if audio_stream is not None: sentence_wav_bytestream = b"" # frame_length = 0 for chunk in audio_stream: try: if chunk is not None: sentence_wav_bytestream += chunk # frame_length += len(chunk) except: # hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS continue # Filter output for better voice filter_output=True if filter_output: try: data_s16 = np.frombuffer(sentence_wav_bytestream, dtype=np.int16, count=len(sentence_wav_bytestream)//2, offset=0) float_data = data_s16 * 0.5**15 reduced_noise = nr.reduce_noise(y=float_data, sr=24000,prop_decrease =0.8,n_fft=1024) sentence_wav_bytestream = (reduced_noise * 32767).astype(np.int16) sentence_wav_bytestream = sentence_wav_bytestream.tobytes() except: print("failed to remove noise") # Directly encode the WAV bytestream to base64 base64_audio = base64.b64encode(pcm_to_wav(sentence_wav_bytestream)).decode('utf8') results.append({ "text": sentence, "audio": base64_audio }) else: # Handle the case where the audio stream is None (e.g., silent response) results.append({ "text": sentence, "audio": "" }) except RuntimeError as e: if "device-side assert" in str(e): # cannot do anything on cuda device side error, need tor estart print( f"Exit due to: Unrecoverable exception caused by prompt:{sentence}", flush=True, ) gr.Warning("Unhandled Exception encounter, please retry in a minute") print("Cuda device-assert Runtime encountered need restart") # HF Space specific.. This error is unrecoverable need to restart space api.restart_space(repo_id=repo_id) else: print("RuntimeError: non device-side assert error:", str(e)) raise e return results latent_map = {} latent_map["Cloée"] = get_latents("voices/cloee-1.wav") latent_map["Julian"] = get_latents("voices/julian-bedtime-style-1.wav") latent_map["Pirate"] = get_latents("voices/pirate_by_coqui.wav") latent_map["Thera"] = get_latents("voices/thera-1.wav") # Define the main function for the API endpoint that takes the input text and chatbot role def generate_story_and_speech(secret_token, system_prompt, input_text, chatbot_role): if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') # Initialize a list of lists for history with the user input as the first entry history = [[input_text, None]] story_sentences = get_sentence(system_prompt, history, chatbot_role) # get_sentence function generates text story_text = "" # Initialize variable to hold the full story text last_history = None # To store the last history after all sentences # Iterate over the sentences generated by get_sentence and concatenate them for sentence, updated_history in story_sentences: if sentence: story_text += sentence.strip() + " " # Add each sentence to the story_text last_history = updated_history # Keep track of the last history update if last_history is not None: # Convert the list of lists back into a list of tuples for the history history_tuples = [tuple(entry) for entry in last_history] return generate_speech_from_history(history_tuples, chatbot_role, story_text) else: return [] # Create a Gradio Interface using only the `generate_story_and_speech()` function and the 'json' output type demo = gr.Interface( fn=generate_story_and_speech, inputs=[ gr.Text(label='Secret Token'), gr.Textbox(placeholder="Enter your system prompt here"), gr.Textbox(placeholder="Enter your text here"), gr.Dropdown(choices=ROLES,label="Select Chatbot Role") ], outputs="json" ) demo.queue() demo.launch(debug=True)