Spaces:
Sleeping
Sleeping
File size: 5,682 Bytes
0385645 0430769 0385645 0430769 0385645 0430769 402abcf 57871b5 402abcf 57871b5 0385645 0430769 0385645 07e174e 2b24886 1dbd212 2b24886 1dbd212 2b24886 c362d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List, Dict, Union
from datasets import load_dataset
import random
import os
from huggingface_hub import login
app = FastAPI()
# Logueo para acceder al dataset gated
token = os.getenv("token_curso")
if token:
login(token)
else:
print("鈿狅笍 WARNING: No se encontr贸 el token de autenticaci贸n en la variable token_curso")
# Carga y filtra nivel 1 GAIA (validation split)
#ds = load_dataset("gaia-benchmark/GAIA", "2023_level1", split="validation",trust_remote_code=True)
ds = load_dataset(
"gaia-benchmark/GAIA",
data_dir="2023_level1",
split="validation",
revision="refs/convert/parquet"
)
QUESTIONS = []
GROUND_TRUTH: Dict[str, str] = {}
for item in ds:
task_id = str(item["task_id"])
QUESTIONS.append({
"task_id": task_id,
"question": item["Question"]
})
GROUND_TRUTH[task_id] = str(item["Final answer"])
class AnswerItem(BaseModel):
task_id: str
submitted_answer: Union[str, int, float]
class Submission(BaseModel):
username: str
agent_code: str
answers: List[AnswerItem]
class ScoreResponse(BaseModel):
username: str
score: float
correct_count: int
total_attempted: int
message: str
@app.get("/questions")
def get_questions():
# Devuelve las 20 preguntas aleatorias de nivel 1 cada vez
chosen = random.sample(QUESTIONS, k=min(20, len(QUESTIONS)))
return chosen
@app.post("/submit")
def submit(sub: Submission):
correct = sum(
1 for ans in sub.answers
if GROUND_TRUTH.get(ans.task_id, "") == str(ans.submitted_answer).strip()
)
total = len(sub.answers)
score = correct / total * 100 if total > 0 else 0.0
return ScoreResponse(
username=sub.username,
score=score,
correct_count=correct,
total_attempted=total,
message=f"Puntuaci贸n: {correct}/{total} = {score:.1f}%"
)
# GET /random-question: Fetch a single random question from the list.
@app.get("/random-question")
def get_random_question():
if not QUESTIONS:
return {"error": "No questions available"}
question = random.choice(QUESTIONS)
return question
# GET /files/{task_id}: Download a specific file associated with a given task ID.
@app.get("/files/{task_id}")
def get_file(task_id: str):
file_path = f"files/{task_id}.txt"
if not os.path.exists(file_path):
return {"error": "File not found"}
with open(file_path, "r") as file:
content = file.read()
return {"task_id": task_id, "content": content}
from fastapi.responses import HTMLResponse
@app.get("/", response_class=HTMLResponse)
def read_root():
return """
<!DOCTYPE html>
<html>
<head>
<title>GAIA Agents - Test Interface</title>
<style>
body { font-family: Arial, sans-serif; margin: 40px; background: #f7f7fa; }
h1 { color: #6d28d9; }
button {
background: #ec4899;
color: white;
border: none;
padding: 10px 20px;
margin: 10px 0;
border-radius: 5px;
font-size: 16px;
cursor: pointer;
}
button:hover { background: #be185d; }
#questions div {
background: #fff;
margin: 10px 0;
padding: 10px;
border-radius: 5px;
box-shadow: 0 1px 4px rgba(0,0,0,0.05);
}
input[type="text"] {
padding: 5px;
border-radius: 3px;
border: 1px solid #ddd;
width: 60%;
}
#result { margin-top: 20px; }
</style>
</head>
<body>
<h1>GAIA Agents - Preguntas y Respuestas</h1>
<button onclick="loadQuestions()">Cargar preguntas</button>
<div id="questions"></div>
<button onclick="submitAnswers()">Enviar respuestas</button>
<div id="result"></div>
<script>
let answers = {};
async function loadQuestions() {
const resp = await fetch('/questions');
const data = await resp.json();
const container = document.getElementById('questions');
container.innerHTML = '';
data.forEach(q => {
const div = document.createElement('div');
div.innerHTML = `
<p><b>${q.task_id}</b>: ${q.question}</p>
<input type="text" id="answer_${q.task_id}" placeholder="Tu respuesta">
`;
container.appendChild(div);
});
}
async function submitAnswers() {
const container = document.getElementById('questions');
answers = {};
Array.from(container.querySelectorAll('input')).forEach(input => {
const tid = input.id.replace('answer_', '');
answers[tid] = input.value;
});
const payload = {
username: "tu_usuario",
agent_code: "https://huggingface.co/spaces/jbaselga/agentes-unit4/tree/main",
answers: Object.entries(answers).map(([tid, ans]) => ({task_id: tid, submitted_answer: ans}))
};
const resp = await fetch('/submit', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify(payload)
});
const result = await resp.json();
document.getElementById('result').innerHTML = `<h3>Resultado</h3><p>${result.message}</p>`;
}
</script>
</body>
</html>
"""
import threading
def run_agent():
import app
app.main()
# Ejecuta el agente en un hilo aparte al arrancar el servidor
threading.Thread(target=run_agent, daemon=True).start() |