|
from llama_index.indices.managed.vectara import VectaraIndex |
|
from dotenv import load_dotenv |
|
import os |
|
from docx import Document |
|
from llama_index.llms.together import TogetherLLM |
|
from llama_index.core.llms import ChatMessage, MessageRole |
|
from Bio import Entrez |
|
import ssl |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import streamlit as st |
|
from googleapiclient.discovery import build |
|
from typing import List, Optional |
|
|
|
load_dotenv() |
|
|
|
os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_Vo9cpGzm6QVtABcdnzVq6QXLdGIP4YAcvcyEAA") |
|
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zqt_Vo9cpBoyEjUQdcTVo2W5hmMKPueBUroBLoGwNQ") |
|
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_Vo9cpHni2hWF_DPJAXmRFKkWzRTWbi-8JwnSxA") |
|
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2") |
|
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940") |
|
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b") |
|
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck") |
|
|
|
index = VectaraIndex() |
|
endpoint = 'https://api.together.xyz/inference' |
|
|
|
def search_pubmed(query: str) -> Optional[List[str]]: |
|
Entrez.email = "vikas.ranaksvt@gmail.com" |
|
try: |
|
ssl._create_default_https_context = ssl._create_unverified_context |
|
handle = Entrez.esearch(db="pubmed", term=query, retmax=3) |
|
record = Entrez.read(handle) |
|
id_list = record["IdList"] |
|
if not id_list: |
|
return None |
|
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml") |
|
articles = Entrez.read(handle) |
|
results = [] |
|
for article in articles['PubmedArticle']: |
|
try: |
|
medline_citation = article['MedlineCitation'] |
|
article_data = medline_citation['Article'] |
|
title = article_data['ArticleTitle'] |
|
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0] |
|
result = f"**Title:** {title}\n**Abstract:** {abstract}\n" |
|
result += f"**Link:** https://pubmed.ncbi.nlm.nih.gov/{medline_citation['PMID']}\n\n" |
|
results.append(result) |
|
except KeyError as e: |
|
print(f"Error parsing article: {article}, Error: {e}") |
|
return results |
|
except Exception as e: |
|
print(f"Error accessing PubMed: {e}") |
|
return None |
|
|
|
def chat_with_pubmed(article_text, article_link): |
|
try: |
|
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API']) |
|
messages = [ |
|
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link), |
|
ChatMessage(role=MessageRole.USER, content=article_text) |
|
] |
|
response = llm.chat(messages) |
|
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article." |
|
except Exception as e: |
|
print(f"Error in chat_with_pubmed: {e}") |
|
return "An error occurred while generating a summary." |
|
|
|
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]: |
|
try: |
|
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"]) |
|
res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute() |
|
if "items" not in res: |
|
return None |
|
results = [] |
|
for item in res["items"]: |
|
title = item["title"] |
|
link = item["link"] |
|
snippet = item["snippet"] |
|
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n" |
|
results.append(result) |
|
return results |
|
except Exception as e: |
|
print(f"Error performing web search: {e}") |
|
return None |
|
|
|
def NEXUS_chatbot(user_input, chat_history=None): |
|
if chat_history is None: |
|
chat_history = [] |
|
response_parts = [] |
|
try: |
|
try: |
|
query_str = user_input |
|
response = index.as_query_engine().query(query_str) |
|
response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}") |
|
except Exception as e: |
|
print(f"Error in Vectara search: {e}") |
|
response_parts.append("Vectara knowledge base is currently unavailable.") |
|
|
|
pubmed_results = search_pubmed(user_input) |
|
if pubmed_results: |
|
response_parts.append("**PubMed Articles (Chat & Summarize):**") |
|
for article_text in pubmed_results: |
|
title, abstract, link = article_text.split("\n")[:3] |
|
chat_summary = chat_with_pubmed(abstract, link) |
|
response_parts.append(f"{title}\n{chat_summary}\n{link}\n") |
|
else: |
|
response_parts.append("No relevant PubMed articles found.") |
|
|
|
web_results = search_web(user_input) |
|
if web_results: |
|
response_parts.append("**Web Search Results:**") |
|
response_parts.extend(web_results) |
|
else: |
|
response_parts.append("No relevant web search results found.") |
|
|
|
response_text = "\n\n".join(response_parts) |
|
except Exception as e: |
|
print(f"Error in chatbot: {e}") |
|
response_text = f"An error occurred: {str(e)}. Please try again later or rephrase your question." |
|
|
|
chat_history.append((user_input, response_text)) |
|
return response_text, chat_history |
|
|
|
def show_info_popup(): |
|
with st.expander("How to use NEXUS"): |
|
st.write(""" |
|
**NEXUS is an AI-powered chatbot designed to assist with medical information.** |
|
**Capabilities:** |
|
* **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries. |
|
* **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible. |
|
* **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding. |
|
* **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results. |
|
**Limitations:** |
|
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice. |
|
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations. |
|
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources. |
|
**How to use:** |
|
1. **Type your medical question in the text box.** |
|
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results. |
|
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information. |
|
4. **In case NEXUS doesn't show the output, please check your internet connection or rerun the same command.** |
|
""") |
|
|
|
if 'chat_history' not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
def display_chat_history(): |
|
for user_msg, bot_msg in st.session_state.chat_history: |
|
st.info(f"**You:** {user_msg}") |
|
st.success(f"**NEXUS:** {bot_msg}") |
|
|
|
def clear_chat(): |
|
st.session_state.chat_history = [] |
|
|
|
def main(): |
|
st.set_page_config(page_title="NEXUS Chatbot", layout="wide") |
|
st.markdown( |
|
""" |
|
<style> |
|
.css-18e3th9 { |
|
padding-top: 2rem; |
|
padding-right: 1rem; |
|
padding-bottom: 2rem; |
|
padding-left: 1rem; |
|
} |
|
.stButton>button { |
|
background-color: #4CAF50; |
|
color: white; |
|
} |
|
body { |
|
background-color: #F0FDF4; |
|
color: #333333; |
|
} |
|
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 { |
|
color: #388E3C; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
st.title("NEXUS Chatbot") |
|
st.write("Ask your medical questions and get reliable information!") |
|
example_questions = [ |
|
"What are the symptoms of COVID-19?", |
|
"How can I manage my diabetes?", |
|
"What are the potential side effects of ibuprofen?", |
|
"What lifestyle changes can help prevent heart disease?" |
|
] |
|
st.sidebar.header("Example Questions") |
|
for question in example_questions: |
|
st.sidebar.write(question) |
|
output_container = st.container() |
|
input_container = st.container() |
|
with input_container: |
|
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...") |
|
new_chat_button = st.button("Start New Chat") |
|
if new_chat_button: |
|
st.session_state.chat_history = [] |
|
if user_input: |
|
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history) |
|
with output_container: |
|
display_chat_history() |
|
show_info_popup() |
|
|
|
if __name__ == "__main__": |
|
main() |