import gradio as gr import os from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.chat_models import ChatOpenAI from langchain.retrievers.document_compressors import LLMChainExtractor from langchain.retrievers.multi_query import MultiQueryRetriever from langchain.retrievers import ContextualCompressionRetriever from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain.vectorstores import Chroma chat = ChatOpenAI() embedding_function = HuggingFaceEmbeddings(model_name = "BAAI/bge-large-en-v1.5",model_kwargs={'device': 'cpu'},encode_kwargs={"normalize_embeddings": True}) def add_docs(path): loader = PyPDFLoader(file_path=path) docs = loader.load_and_split(text_splitter=RecursiveCharacterTextSplitter(chunk_size = 500, chunk_overlap = 100, length_function = len, is_separator_regex=False)) model_vectorstore = Chroma db = model_vectorstore.from_documents(documents=docs,embedding= embedding_function, persist_directory="output/general_knowledge") return db def answer_query(message, chat_history): base_compressor = LLMChainExtractor.from_llm(chat) db = Chroma(persist_directory = "output/general_knowledge", embedding_function=embedding_function) base_retriever = db.as_retriever() mq_retriever = MultiQueryRetriever.from_llm(retriever = base_retriever, llm=chat) compression_retriever = ContextualCompressionRetriever(base_compressor=base_compressor, base_retriever=mq_retriever) matched_docs = compression_retriever.get_relevant_documents(query = message) context = "" for doc in matched_docs: page_content = doc.page_content context+=page_content context += "\n\n" template = """ Answer the following question only by using the context given below in the triple backticks, do not use any other information to answer the question. If you can't answer the given question with the given context, you can return an emtpy string ('') Context: ```{context}``` ---------------------------- Question: {query} ---------------------------- Answer: """ human_message_prompt = HumanMessagePromptTemplate.from_template(template=template) chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt]) prompt = chat_prompt.format_prompt(query = message, context = context) response = chat(messages=prompt.to_messages()).content chat_history.append((message,response)) return "", chat_history with gr.Blocks() as demo: gr.HTML("