import streamlit as st from langchain_ollama.llms import Ollama # Updated import path from langchain import LLMChain from langchain.prompts import PromptTemplate # Title for the Streamlit app st.title("LLaMA 3.1 8B Instruct Model with Streamlit (Using LangChain & Ollama)") # Load the Ollama model using LangChain @st.cache_resource def load_ollama_model(): return Ollama(model="llama3.1") # You can use other versions if needed llama_model = load_ollama_model() # Create a LangChain LLMChain object prompt_template = PromptTemplate( input_variables=["prompt"], template="{prompt}" ) llm_chain = LLMChain( llm=llama_model, prompt=prompt_template ) # Input text from the user user_input = st.text_area("Enter your prompt:", "") # Generate response using the model if st.button("Generate"): if user_input: # Generate response from LLMChain using LangChain and Ollama response = llm_chain.run({"prompt": user_input}) st.text_area("Model Response:", response, height=200) else: st.warning("Please enter a prompt.")